995 resultados para Self-assembled thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of ordered self-assembled nanoislands on stepped substrates is studied systematically by kinetic Monte Carlo simulations. As the terrace width is small, the formation of nanoislands is confined in the steps and nanoislands ordered in lines or nanowires can be obtained. The Schwoebel barrier at the step edges has a great influence on the evolution of both the size and space distributions of the islands. When the terrace width is relatively large, self-ordering of nanoislands in the center regions of the terraces happens. An unexpected trend of the nanoisland self-ordering is found as the deposition thickness is larger than 0.2 ML, which can be related to the attractive migrations between nearby islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution of the ordered N-N' dibutyl-substituted quinacridone (QA4C) multilayers (3 MLs) has been monitored in situ and in real time at various substrate temperatures using low energy electron diffraction (LEED) during organic molecular beam epitaxy (MBE). Experimental results of LEED patterns clearly reveal that the structure of the multilayer strongly depends on the substrate temperature. Multilayer growth can be achieved at the substrate temperatures below 300 K, while at the higher temperatures we can only get one ordered monolayer of QA4C. Two kinds of structures, the commensurate and incommensurate one, often coexist in the QA4C multilayer. With a method of the two-step substrate temperatures, the incommensurate one can be suppressed, and the commensurate, on the other hand, more similar to the (001) plane of the QA4C bulk crystal, prevails with the layer of QA4C increasing to 3 MLs. The two structures in the multilayers are compressed slightly in comparison to the original ones in the first monolayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its high energy density direct current(dc)thermal plasmas are widely accepted as a processing medium which facilitates high processing rates high fluxes of radical species the potential for smaller jnstallations a wide choice of reactants and high quench rates[1].A broad range of industrial processing methods have been developed based on dc plasma technology. However,nonstationary features limited new applications of dc plasma in advanced processing, where reliability£¬reproducibility and precise controllability are required£. These challenges call for better understanding of the arc and jet behavior over a wide range of generating parameters and a comprehensive control of every aspect of lhe plasma processing.