1000 resultados para S-phase Checkpoint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study involves synthesis of a series of Tb3+ doped ZrO2 nanophosphors by solution combustion method using oxalyl dihydrazide as fuel. The as-formed ZrO2:Tb3+ nanophosphors having different concentrations of Tb3+ (1-11 mol%) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible spectroscopic techniques and the materials were subjected to photoluminescence and photocatalytic dye decolorization studies. The PXRD analysis indicates the formation of tetragonal symmetry up to 5 mol% concentration of Tb3+. Further increase in Tb3+ concentration has lead to cubic phase formation and the same was confirmed by Rietveld refinement analysis. SEM images revealed that material was highly porous in nature comprising of large voids and cracks with irregular morphology. TEM and SAED images clearly confirm the formation of high quality tetragonal nanocrystals. The emissive properties of nanophosphors were found to be dependent on Tb3+ dopant concentration. The green emission of the material was turned to white emission with the increase of Tb3+ ion concentration. The photocatalytic activities of these nanophosphors were probed for the decolorization of Congo red under UV and Sunlight irradiation. All the photocatalysts showed enhanced activity under UV light compared to Sunlight. The photocatalyst with 7 mol% Tb3+ showed enhanced activity attributed to effective separation of charge carriers due to phase transformation from tetragonal to cubic. The influence of crystallite size and PL on charge carrier trapping-recombination dynamics was investigated. The study successfully demonstrates synthesis of tetragonal and cubic ZrO2:Tb3+ green nanophosphors with superior photoluminescence and photocatalytic activities. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epitaxially grown alloy thin films, spinodal decomposition may be promoted or suppressed depending on the sign of the epitaxial strain. We study this asymmetry by extending Cahn's linear theory of spinodal decomposition to systems with a composition dependent lattice parameter and modulus (represented by Vegard's law coefficients, GRAPHICS] and y, respectively), and an imposed (epitaxial) strain (e). We show analytically (and confirm using simulations) that the asymmetric effect of epitaxial strains arises only in elastically inhomogeneous systems. Specifically, we find good agreement between analytical and simulation results for the wave number GRAPHICS] of the fastest growing composition fluctuation. The asymmetric effect due to epitaxial strain also extends to microstructure formation: our simulations show islands of elastically softer (harder) phase with (without) a favourable imposed strain. We discuss the implications of these results to GeSi thin films on Si and Ge substrates, as well as InGaAs films on GaAs substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fmoc-Leu-psiCH2NCS] undergoes a reversible isomorphous phase transition upon cooling. The crystal structure at 100 K displays a short N=C=S center dot center dot center dot N=C=S intermolecular interaction, which has been characterized based on experimental charge density analysis, as a stabilizing interaction with both sigma-holes and pi-holes acting cooperatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of bromo-terminated polystyrene (PS-Br) and poly(vinyl methylether) (PVME) exhibit lower critical solution temperatures. In this study, PS-Br was designed by atom transfer radical polymerization and was converted to thiol-capped polystyrene (PS-SH) by reacting with thiourea. The silver nanoparticles (nAg) were then decorated with covalently bound PS-SH macromolecules to improve the phase miscibility in the PS-Br-PVME blends. Thermally induced demixing in this model blend was followed in the presence of polystyrene immobilized silver nanoparticles (PS-g-nAg). The graft density of the PS macromolecules was estimated to be ca. 0.78 chains per nm(2). Although the matrix and the grafted molecular weights were similar, PS-g-nAg particles were expelled from the PS phase and were localized in the PVME phase of the blends. This was addressed with respect to intermediate graft density and favourable PS-PVME contacts from microscopic interactions point of view. Interestingly, blends with 0.5 wt% PS-g-nAg delayed the spinodal decomposition temperature in the blends by ca. 18 degrees C with respect to the control blends. The scale of cooperativity, as determined by differential scanning calorimetry, increased only marginally in the case of PS-g-nAg; however, it increased significantly in the presence of bare nAg particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+ Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3CO3.93+O-alpha(9.36-delta), are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+alpha O9.36-delta are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca-Co-O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T-N(Mn) approximate to 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the stress and electric field driven structural and microstructural transformations in the morphotropic phase boundary (MPB) compositions of the high Curie point piezoelectric system BiScO3-PbTiO3 has been examined by ex situ based techniques. Using a powder poling technique, which is based on the concept of exploiting the irreversible structural change that occurs after the application of a strong electric field and stress independently, it was possible to ascertain that both moderate stress and electric field induce identical structural transformation-a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. Moreover, analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, we demonstrate that the criticality associated with the interferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase diagram studies of succinonitrile-vanillin system show the formation of 2:1 congruent melting type compound. Crystallization velocities of pure components, succinonitrile-vanillin complex, and two eutectics have been determined at different undercoolings. On the basis of heat of fusion measurements, excess thermodynamic functions have been calculated. Microstructural studies revealed that impurities modify the morphology. FTIR spectral studies and computer simulation have shown the existence of hydrogen bonding in the eutectics and the congruent melting compound. On the basis of experimental results, the mechanism of formation of eutectics and its solidification behavior are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150 degrees C and then to a stable hexagonal structure at high temperatures (>= 250 degrees C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)(1-x)Se-x thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150 degrees C. The intermediate NaCl structure has been observed only for x, 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)(1-x)Se-x films are better candidates for phase change memory applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new desodiated derivative compound, Na0.89Fe1.8(SO4)(3), was prepared by the chemical oxidation of alluaudite Na2.4Fe1.8(SO4)(3) Phase using NOBF4 as oxidant. The structure and valency of Fe were characterized by X-ray diffraction (XRD) and Fe-57 Mossbauer spectroscopy. Intercalation behavior of lithium ions in the structure of Na0.89Fe1.8(SO4)(3) was gauged by electrochemical analyses and ex-situ X-ray diffraction. A high capacity of 110 mAh g(-1) at 0.1 C was obtained with a good rate kinetics within a range of 0.1-10 C(1 C = 118 mAh g-1) involving a high Fe3+/Fe2+ redox potential of 3.75 V (vs. Li/Li+). These results confirmed that the Na2.4-delta Fe1.8(SO4)(3) framework was stable even after oxidation and forms a new competitive cathode for the reversible intercalation of lithium ions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi phase, delay-locked loop (DLL) based frequency synthesizer is designed for harmonic rejection mixing in reconfigurable radios. This frequency synthesizer uses a 1 GHz input reference frequency, and achieves <= 20ns settling time by utilizing a wide loop bandwidth. The circuit has been designed in 0.13-mu m CMOS technology. It is designed for a frequency range of 500 MHz to 3 GHz with stuck/harmonic lock removal assist. Index Terms-stuck lock, harmonic lock, delay-locked loops, multi phase, phase detector, frequency synthesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present study reveals that the length-scale of phase separation in La5/8-yPryCa3/8MnO3 thin films can be controlled by strain disorder invoked during the growth and relaxation process of film. Strain disorder provides an additional degree of freedom to tune colossal magnetoresistance. Magneto-transport measurements following cooling and heating in unequal fields protocol demonstrate that coherent strain stabilizes antiferromagnetic insulating phase, while strain disorder favors ferromagnetic metallic phase. Compared to bulk, antiferromagnetic-insulating phase freezes at lower temperatures in strain disordered films. Raman spectroscopy confirms the coexistence of charge-ordered-insulating and ferromagnetic-metallic phases which are structurally dissimilar and possess P2(1)/m and R-3C like symmetries, respectively. (C) 2015 AIP Publishing LLC.