987 resultados para Pick-Sloan Missouri Basin Program (U.S.) Garrison Division Unit.
Resumo:
There has been much recent interest in the origin of silicic magmas at spreading centres away from any possible influence of continental crust. Here we present major and trace element data for 29 glasses (and 55 whole-rocks) sampled from a 40 km segment of the South East Rift in the Manus Basin that span the full compositional continuum from basalt to rhyolite (50-75 wt % SiO2). The glass data are accompanied by Sr-Nd-Pb, O and U-Th-Ra isotope data for selected samples. These overlap the ranges for published data from this part of the Manus Basin. Limited increases in Cl/K ratios with increasing SiO2, La-SiO2 and Yb-SiO2 relationships, and the oxygen isotope data rule out models in which the more silicic lavas result from partial melting of altered oceanic crust or altered oceanic gabbros. Rather, the data form a coherent array that is suggestive of closed-system fractional crystallization and this is well simulated by MELTS models run at 0.2 GPa and QFM (quartz-fayalite-magnetite buffer) with 1 wt % H2O, using a parental magma chosen from the basaltic glasses. Although some assimilation of altered oceanic crust or gabbro cannot be completely ruled out, there is no evidence that this plays an important role in the origin of the silicic lavas. The U-series disequilibria are dominated by 238U and 226Ra excesses that limit the timescale of differentiation to less than a few millennia. Overall, the data point to rapid evolution in relatively small magma lenses located near the base of thick oceanic crust; we speculate that this was coupled with relatively low rates of basaltic recharge. A similar model may be applicable to the generation of silicic magmas elsewhere in the ocean basins.
Resumo:
Voluminous, subaerial magmatism resulted in the formation of extensive seaward-dipping reflector sequences (SDRS) along the Paleogene Southeast Greenland rifted margin. Drilling during Leg 163 recovered basalts from the SDRS at 66ºN (Site 988) and 63ºN (Sites 989 and 990). The basalt from Site 988 is light rare-earth-element (REE) enriched (La(n)/Yb(n) = 3.4), with epsilon-Nd(t=60) = 5.3, 87Sr/86Sr = 0.7034, and 206Pb/204Pb = 17.98. It is similar to tholeiites recovered from the Irminger Basin during Leg 49 and to light-REE-enriched tholeiites from Iceland. Drilling at Site 989, the innermost of the sites on the 63ºN transect, was proposed to extend recovery of the earliest part of the SDRS initiated during Leg 152. These basalts are, however, younger than those from Site 917 and are compositionally similar to basalts from the more seaward Sites 990 and 915. Many of the basalts from Sites 989 and 990 show evidence of contamination by continental crust (e.g., epsilon-Nd(t=60) extends down to -3.7, 206Pb/204Pb extends down to 15.1). We suggest that the contaminant is a mixture of Archean granulite and amphibolite and that the most contaminated basalts have assimilated ~5% of crust. Uncontaminated basalts are isotopically similar to basalts from Site 918, on the main body of the SDRS, and are light-REE depleted. Consistent with previous models of the development of this margin, we show that at the time of formation of the basalts from Sites 989 and 990 (1) melting was at relatively shallow levels in a fully-fledged rift zone; (2) fragments of continental crust were present in the lithosphere above the zones of melt generation; and (3) the sublithospheric mantle was dominated by a depleted Icelandic plume component.
Resumo:
The late Eocene through earliest Oligocene (40-32 Ma) spans a major transition from greenhouse to icehouse climate, with net cooling and expansion of Antarctic glaciation shortly after the Eocene/Oligocene (E/O) boundary. We investigated the response of the oceanic biosphere to these changes by reconstructing barite and CaCO3 accumulation rates in sediments from the equatorial and North Pacific Ocean. These data allow us to evaluate temporal and geographical variability in export production and CaCO3 preservation. Barite accumulation rates were on average higher in the warmer late Eocene than in the colder early Oligocene, but cool periods within the Eocene were characterized by peaks in both barite and CaCO3 accumulation in the equatorial region. We infer that climatic changes not only affected deep ocean ventilation and chemistry, but also had profound effects on surface water characteristics influencing export productivity. The ratio of CaCO3 to barite accumulation rates, representing the ratio of particulate inorganic C accumulation to Corg export, increased dramatically at the E/O boundary. This suggests that long-term drawdown of atmospheric CO2 due to organic carbon deposition to the seafloor decreased, potentially offsetting decreasing pCO2 levels and associated cooling. The relatively larger increase in CaCO3 accumulation compared to export production at the E/O suggests that the permanent deepening of the calcite compensation depth (CCD) at that time stems primarily from changes in deep water chemistry and not from increased carbonate production.
Resumo:
Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.
Resumo:
The western Lau Basin, between the Central and Eastern Lau Spreading Centers and the Lau Ridge, contains several small, elongate, fault-bounded, partially sediment-filled sub-basins. Sites 834 and 835 were drilled in the oldest part of the Lau Basin in two of these small extensional basins close to the Lau Ridge, formed on late Miocene to early Pliocene oceanic crust. Both sites show a similar sediment sequence that consists of clayey nannofossil oozes and mixed sediments interbedded with epiclastic vitric sands and silts. The vitric sands and silts are largely restricted to the deeper part of the sediment column (early Pliocene-late Pliocene), and the upper part of the sediment column at both sites consists of a distinctive sequence of brown clayey nannofossil ooze, stained by iron and manganese oxyhydroxides (late Pliocene-Holocene). However, the clayey nannofossil ooze sequence at Site 835 is anomalously thick and contains several medium- to very thick beds of matrix-supported, mud-clast conglomerate (interpreted as muddy debris-flow deposits), together with large amounts of redeposited clayey nannofossil ooze and coherent rafted blocks of older hemipelagic material. Redeposited clayey nannofossil oozes can be distinguished from hemipelagic nannofossil oozes using several sedimentological criteria. These include variation in color hue and chroma, presence or absence of bioturbation, presence or absence of scattered foraminifers, grain-size characteristics, variability in calcium carbonate content, presence or absence of pumice clasts, and micropaleontology. Clayey nannofossil ooze turbidites and hemipelagites are also geochemically distinct, with the turbidites being commonly enriched in Mn, Ni, Pb, Zn, Cr, and P. The sediment sequence at Site 835 is dominated by allochthonous sediments, either muddy debris-flow deposits, coherent rafted blocks, or thick clayey nannofossil ooze turbidites. Since 2.9 Ma, only 25% of the 133 m of sediments deposited represents hemipelagic deposition, with an average sedimentation rate of 1.5 cm/k.y.. Allochthonous sediments were the main sediment type deposited during the Brunhes geomagnetic Epoch and make up 80% of the thickness of sediment deposited during this period. Short intervals of mainly hemipelagic deposition occurred from 0.4 to 0.9 Ma, 1.0 to 1.4 Ma, and 1.7 to 2.1 Ma. However, allochthonous sediments were again the dominant sediment type deposited between 2.1 and 2.5 Ma, with a large slide complex emplaced around 2.5 Ma. We conclude that the adjacent high ground, surrounding the basin in which Site 835 was drilled, was affected by marked instability throughout the late Pliocene and Pleistocene. In contrast, sedimentation at Site 834 during this period has been dominated by hemipelagic deposition, with redeposited sediments making up slightly less than 17% of the total thickness of sediment deposited since 2.3 Ma. However, there was a marked increase in frequency and magnitude of redeposited sediments at around 0.2 Ma at Site 834, which broadly corresponds to the onset of a major episode of turbidite and debris-flow emplacement beginning about 0.4 Ma at Site 835. This episode of instability at both sites may be the effect of the approach and passing of the Central Lau propagator at the latitude of Sites 834 and 835 at about 0.5 Ma.
Resumo:
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.
Resumo:
Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 µm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.
Resumo:
New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacifc, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafoor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacifc Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower epsilon-Ne(T) for a given epsilon-Sr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Delta 7/4 Pb (5.3-9.3) and Delta 8/4 Pb (46.3-68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type ("normal") mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Ne(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacifc region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources.