Whole rock analytical techniques and glas analytical techniques of silicic magmas from the South East Rift, Manus Basin
Cobertura |
MEDIAN LATITUDE: -3.580886 * MEDIAN LONGITUDE: 151.195675 * SOUTH-BOUND LATITUDE: -3.815200 * WEST-BOUND LONGITUDE: 150.278300 * NORTH-BOUND LATITUDE: -3.070000 * EAST-BOUND LONGITUDE: 152.105700 * DATE/TIME START: 2006-07-25T06:38:00 * DATE/TIME END: 2006-08-23T11:59:00 |
---|---|
Data(s) |
22/05/2015
|
Resumo |
There has been much recent interest in the origin of silicic magmas at spreading centres away from any possible influence of continental crust. Here we present major and trace element data for 29 glasses (and 55 whole-rocks) sampled from a 40 km segment of the South East Rift in the Manus Basin that span the full compositional continuum from basalt to rhyolite (50-75 wt % SiO2). The glass data are accompanied by Sr-Nd-Pb, O and U-Th-Ra isotope data for selected samples. These overlap the ranges for published data from this part of the Manus Basin. Limited increases in Cl/K ratios with increasing SiO2, La-SiO2 and Yb-SiO2 relationships, and the oxygen isotope data rule out models in which the more silicic lavas result from partial melting of altered oceanic crust or altered oceanic gabbros. Rather, the data form a coherent array that is suggestive of closed-system fractional crystallization and this is well simulated by MELTS models run at 0.2 GPa and QFM (quartz-fayalite-magnetite buffer) with 1 wt % H2O, using a parental magma chosen from the basaltic glasses. Although some assimilation of altered oceanic crust or gabbro cannot be completely ruled out, there is no evidence that this plays an important role in the origin of the silicic lavas. The U-series disequilibria are dominated by 238U and 226Ra excesses that limit the timescale of differentiation to less than a few millennia. Overall, the data point to rapid evolution in relatively small magma lenses located near the base of thick oceanic crust; we speculate that this was coupled with relatively low rates of basaltic recharge. A similar model may be applicable to the generation of silicic magmas elsewhere in the ocean basins. |
Formato |
application/zip, 3 datasets |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.846405 doi:10.1594/PANGAEA.846405 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Relação |
Supplementary material - Table S1, Table S2, Table S3 (Excel files) (URI: http://store.pangaea.de/Publications/Beier_etal_2015/Data_Supplement.zip) |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Beier, Christoph; Bach, Wolfgang; Turner, S; Niedermeier, D; Woodhead, Jon D; Erzinger, Jörg; Krumm, Stefan (2015): Origin of silicic magmas at spreading centres - an example from the South East Rift, Manus Basin. Journal of Petrology, 56(2), 255-272, doi:10.1093/petrology/egu077 |
Palavras-Chave | #[ID]; 143Nd/144Nd; 206Pb/204Pb; 207Pb/204Pb; 208Pb/204Pb; 226Ra; 226Ra/230Th; 230Th/232Th; 230Th/238U; 234U/238U; 238U/232Th; 87Sr/86Sr; Al; Al2O3; Aluminium; Aluminium oxide; Antimony; Area; Area/locality; Ba; BaO; Barium; Barium oxide; Ca; Caesium; Calcium; Calcium oxide; Calculated; CaO; Cat; Cations; Ce; Cerium; Chlorine; Chromium; Chromium(III) oxide; Cl; Co; Cobalt; Copper; Cr; Cr2O3; Cs; Cu; d18O; delta 18O; Depth; DEPTH, sediment/rock; Dy; Dysprosium; Electron microprobe JEOL JXA-8900; Elevation; Er; Erbium; Eu; Europium; Event; F; Fe2+; Fe2O3; Fe3+; FeO; Fluorine; Ga; Gadolinium; Gallium; Gd; Hafnium; Hf; Ho; Holmium; Iron 2+; Iron 3+; Iron oxide, Fe2O3; Iron oxide, FeO; K; K2O; La; Label; LA-ICP-MS, Laser-ablation inductively coupled plasma mass spectrometer; Lanthanum; Latitude; LATITUDE; Lead; Lead 206/Lead 204 ratio; Lead 207/Lead 204 ratio; Lead 208/Lead 204 ratio; Longitude; LONGITUDE; Lu; Lutetium; Magnesium; Magnesium oxide; Manganese; Manganese oxide; Mg; MgO; Minerals; Mn; MnO; Mo; Molybdenum; Na; Na2O; Nb; Nd; Neodymium; Neodymium 143/Neodymium 144; Ni; Nickel; Nickel oxide; NiO; Niobium; P; P2O5; Pb; per mil SMOW; Phosphorus; Phosphorus oxide; Potassium; Potassium oxide; Pr; Praseodymium; Radium 226; Radium 226/Thorium 230 ratio; Rb; Rubidium; S; Samarium; Sample code/label; Sample elevation; Sb; Si; Silicon; Silicon dioxide; SiO2; Sm; Sn; SO3**2-; Sodium; Sodium oxide; Sr; Strontium; Strontium 87/Strontium 86 ratio; Sulfite; Sulfur, total; Sum; Ta; Tantalum; Tb; Terbium; Th; Thallium; Thorium; Thorium 230/Thorium 232 ratio; Thorium 230/Uranium 238 ratio; Thulium; Ti; Tin; TiO2; Titanium; Titanium oxide; Tl; Tm; tot; Total; Type; U; Uranium; Uranium 234/Uranium 238 activity ratio; Uranium 238/Thorium 232 ratio; V; Vanadium; Water depth; Y; Yb; Ytterbium; Yttrium; Zinc; Zinc oxide; Zirconium; Zn; ZnO; Zr |
Tipo |
Dataset |