999 resultados para Numerical integrations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical analysis of a quantum directional coupler based on Pi-shaped electron waveguides is presented with use of the scattering-matrix method. After the optimization of the device parameters, uniform output for the two output ports and high directivity are obtained within a wide range of the electron momenta. The electron transfer in the device is found more efficient than that in the previously proposed structures. The study of the shape-dependence of transmission for the device shows that the device structure with smooth boundaries exhibits a much better performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically investigate four-wave-mixing (FWM) based multichannel wavelength conversion for amplitude-modulated signals, phase-modulated signals, together with mixed amplitude and phase modulated signals. This paper also discusses the influence of stimulated Brillouin scattering (SBS) effects on high-efficiency FWM-based wavelength conversion applications. Our simulation results show that DPSK signals are more suitable for FWM-based multichannel wavelength conversion because the OOK signals will suffer from the inevitable datapattern-dependent pump depletion. In future applications, when the modulation format is partially upgraded from OOK to DPSK, the influence of OOK signals on the updated DPSK signals must be considered when using multichannel wavelength conversion. This influence becomes severe with the increase of OOK channel number. It can be concluded that DPSK signals are more appropriate for both transmission and multichannel wavelength conversion,especially in long haul and high bit-rate system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new method for calculating transmission coefficients across arbitrary potential barriers based on the Runge-Kutta method. A numerical solution of the Schrodinger equation is calculated using the Runge-Kutta method,and a new model is established to analyze the numerical results to find the transmission coefficient. This technique is applied to various cases, such as parabolic potential barrier and double-barrier structures. Transmission probability with high precision is obtained and discussed. The tunnelling current density through a MOS structure is also explored and the result coincides with the Fowler-Nordheim model,which indicates the applicability of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fabrication technology for three-dimensionally buried silica on silicon optical waveguide based on deep etching and thermal oxidation is presented. Using this method, a silicon layer is left at the side of waveguide. The stress distribution and effective refractive index are calculated by using finite element method and finite different beam propagation method, respectively. The results indicate that the stress of silica on silicon optical waveguide fabricated by this method can be matched in parallel and vertical directions and stress birefringence can be effectively reduced due to the side-silicon layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional quantum model based on the solution of Schrodinger and Poisson equations is first presented for In0.52Al0.48As/In0.53Ga0.47As/InP HEMT. According to the model, the two-dimensional distributions of electron density and transverse electric field in the channel of InAlAs/InGaAs HEMT are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau theological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (rho(1)/rho(g) up to 10(3)) and high viscosity (eta(1)/eta(g) up to 10(4)). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermocapillary flow in a rectangular liquid pool of large Prandtl fluid (Pr = 105.6) is numerically studied in microgravity. Oscillatory thermocapillary flow arises when the imposed temperature difference between the sidewalls exceeds a critical value. The fluctuations of the oscillatory flow, accompanied by the propagation of the hydrothermal wave from the cold sidewall to the hot one, are much smaller than the time-averaged velocity and temperature fields. The corresponding disturbance cells arise in the centre of the liquid pool initially, and extend to the whole region with the increasing imposed temperature difference. The present study reveals the different characteristics of the oscillatory themocapillary flow in the rectangular liquid pool as compared to the cases in other configurations.