996 resultados para Einstein Condensation
Resumo:
Data from 58 strong-lensing events surveyed by the Sloan Lens ACS Survey are used to estimate the projected galaxy mass inside their Einstein radii by two independent methods: stellar dynamics and strong gravitational lensing. We perform a joint analysis of these two estimates inside models with up to three degrees of freedom with respect to the lens density profile, stellar velocity anisotropy, and line-of-sight (LOS) external convergence, which incorporates the effect of the large-scale structure on strong lensing. A Bayesian analysis is employed to estimate the model parameters, evaluate their significance, and compare models. We find that the data favor Jaffe`s light profile over Hernquist`s, but that any particular choice between these two does not change the qualitative conclusions with respect to the features of the system that we investigate. The density profile is compatible with an isothermal, being sightly steeper and having an uncertainty in the logarithmic slope of the order of 5% in models that take into account a prior ignorance on anisotropy and external convergence. We identify a considerable degeneracy between the density profile slope and the anisotropy parameter, which largely increases the uncertainties in the estimates of these parameters, but we encounter no evidence in favor of an anisotropic velocity distribution on average for the whole sample. An LOS external convergence following a prior probability distribution given by cosmology has a small effect on the estimation of the lens density profile, but can increase the dispersion of its value by nearly 40%.
Resumo:
FS CMa type stars are a recently described group of objects with the B[e] phenomenon which exhibits strong emission-line spectra and strong IR excesses. In this paper, we report the first attempt for a detailed modeling of IRAS 00470+6429, for which we have the best set of observations. Our modeling is based on two key assumptions: the star has a main-sequence luminosity for its spectral type (B2) and the circumstellar (CS) envelope is bimodal, composed of a slowly outflowing disklike wind and a fast polar wind. Both outflows are assumed to be purely radial. We adopt a novel approach to describe the dust formation site in the wind that employs timescale arguments for grain condensation and a self-consistent solution for the dust destruction surface. With the above assumptions we were able to satisfactorily reproduce many observational properties of IRAS 00470+6429, including the Hi line profiles and the overall shape of the spectral energy distribution. Our adopted recipe for dust formation proved successful in reproducing the correct amount of dust formed in the CS envelope. Possible shortcomings of our model, as well as suggestions for future improvements, are discussed.
Resumo:
The genus Copidognathus includes one-third of the species of Halacaridae described to date. This article describes spermiogenesis, sperm cell morphology and accompanying secretions from three species of Copidognathus. Initial spermatids have electron-dense cytoplasm with scattered mitochondria, a well-developed Golgi body, and nuclei with patches of heterochromatin. The cytoplasm and nuclei of these cells undergo intense swelling. The second spermatids are large electron-translucent cells, with small mitochondria in row along the remains of the endoplasmatic reticulum. In the succeeding stage, most of the cytoplasmatic structures and mitochondria have disappeared or have undergone profound transformations. Nuclei and cells elongate and chromatin begins to condense near the nuclear envelope. An acrosomal complex appears at the tip of the nucleus. The acrosomal filament is thick and runs the entire length of the nucleus. Plasmalemmal invaginations at the cell surface give rise to tubules filled with an electron-dense material. Sperm cell maturation is completed in the ventral portion of the germinal part, near the testicular lumen. As a final step in spermiogenesis, cytoplasm of the last spermatid undergoes a moderate condensation and the cariotheca disappears. Mature sperm cells were found in a matrix of ""simple"" and ""complex"" corpuscles, the latter consisting of flattened, spindle-shaped secreted bodies. Rather than in individual sperm aggregates, spermatozoa were contained in a single droplet inside the vas deferens, on a large secretion mass, structured as rows of platelets sunk in a fine grained matrix. Each mature sperm cell is covered by a thick secreted coat. In contrast to the genera Rhombognathus and other Actinotrichida, Copidognathus displays a set of features that must be regarded as apomorphic. The absence of usual mitochondria, the presence of electro-dense tubules and secretions similar to those present in Thalassarachna and Halacarellus, and the pattern of nuclear condensation are possibly shared apomorphies with these latter genera. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Fluorescence in situ hybridization (FISH) using telomeric and ribosomal sequences was performed in four species of toad genus Chaunus: C. ictericus, C. jimi, C. rubescens and C. schneideri. Analyses based on conventional, C-banding and Ag-NOR staining were also carried out. The four species present a 2n = 22 karyotype, composed by metacentric and submetacentric chromosomes, which were indistinguishable either after conventional staining or banding techniques. Constitutive heterochromatin was predominantly located at pericentromeric regions, and telomeric sequences (TTAGGG)(n) were restricted to the end of all chromosomes. Silver staining revealed Ag-NORs located at the short arm of pair 7, and heteromorphism in size of NOR signals was also observed. By contrast, FISH with ribosomal probes clearly demonstrated absence of any heteromorphism in size of rDNA sequences, suggesting that the difference observed after Ag-staining should be attributed to differences in chromosomal condensation and/or gene activity rather than to the number of ribosomal cistrons.
Resumo:
Introduction. The objective of this study was to show the morphologic characteristics of allograft renal biopsies in renal transplant patients with stable renal function, which can potentially be early markers of allograft dysfunction, after 5 years of follow-up. Methods. Forty-nine renal transplant patients with stable renal function were submitted to renal biopsies and simultaneous measurement of serum creatinine (Cr). Histology was evaluated using Banff scores, determination of interstitial fibrosis by Sirius red staining and immunohistochemical study of proximal tubule and interstitial compartment (using cytokeratin, vimentin, and myofibroblasts as markers). Biopsies were evaluated according to the presence or absence of the epitheliomesenchymal transition (EMT). The interstitial presence of myofibroblasts and tubular presence of vimentin was also analyzed simultaneously. Renal function was measured over the follow-up period to estimate the reduction of graft function. Results. Median posttransplant time at enrollment was 105 days. Patients were followed for 64.3 +/- 8.5 months. The mean Cr at biopsy time was 1.44 +/- 0.33 mg/dL, and after the follow-up it was 1.29 +/- 0.27 mg/dL. Nine patients (19%) had a reduction of their graft function. Eleven biopsies (22%) had tubulointerstitial alterations according to Banff score. Seventeen biopsies (34%) presented EMT. Fifteen biopsies (32%) had high interstitial expression of myofibroblasts and tubular vimentin. Using Cox multivariate analysis, HLA and high expression of interstitial myofibroblasts and tubular vimentin were associated with reduction of graft function, yielding a risk of 3.3 (P = .033) and 9.8 (P = .015), respectively. Conclusion. Fibrogenesis mechanisms occur very early after transplantation and are risk factors for long-term renal function deterioration.
Resumo:
The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
Resumo:
Organic aerosol (OA) in the atmosphere consists of a multitude of organic species which are either directly emitted or the products of a variety of chemical reactions. This complexity challenges our ability to explicitly characterize the chemical composition of these particles. We find that the bulk composition of OA from a variety of environments (laboratory and field) occupies a narrow range in the space of a Van Krevelen diagram (H: C versus O:C), characterized by a slope of similar to-1. The data show that atmospheric aging, involving processes such as volatilization, oxidation, mixing of air masses or condensation of further products, is consistent with movement along this line, producing a more oxidized aerosol. This finding has implications for our understanding of the evolution of atmospheric OA and representation of these processes in models. Citation: Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi: 10.1029/2010GL042737.
Resumo:
Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug-Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m(-2) s(-1) around noon. An average fine particle flux of 0.05 +/- 0.10 10(6) m(-2) s(-1) was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We consider the dynamics of cargo driven by a collection of interacting molecular motors in the context of ail asymmetric simple exclusion process (ASEP). The model is formulated to account for (i) excluded-volume interactions, (ii) the observed asymmetry of the stochastic movement of individual motors and (iii) interactions between motors and cargo. Items (i) and (ii) form the basis of ASEP models and have already been considered to study the behavior of motor density profile [A. Parmeggiani. T. Franosch, E. Frey, Phase Coexistence in driven one-dimensional transport, Phys. Rev. Lett. 90 (2003) 086601-1-086601-4]. Item (iii) is new. It is introduced here as an attempt to describe explicitly the dependence of cargo movement on the dynamics of motors in this context. The steady-state Solutions Of the model indicate that the system undergoes a phase transition of condensation type as the motor density varies. We study the consequences of this transition to the behavior of the average cargo velocity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We analyze the consistency of the recently proposed regularization of an identity based solution in open bosonic string field theory. We show that the equation of motion is satisfied when it is contracted with the regularized solution itself. Additionally, we propose a similar regularization of an identity based solution in the modified cubic superstring field theory.
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conservation laws have provided an elegant and efficient tool to evaluate the open string field theory interaction vertex, they have been originally implemented in the case where the string field is expanded in the Virasoro basis. In this work we derive conservation laws in the case where the string field is expanded in the so-called sliver L(0)-basis. As an application of this new set of conservation laws, we compute the open string field action relevant to the tachyon condensation and in order to present not only an illustration but also an additional information, we evaluate the action without imposing a gauge choice.
Resumo:
The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) anti cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol froth the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.