1000 resultados para EMITTER LAYER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical and structural properties of self-organized InAs/GaAs quantum dots (QDs) with InxGa1-xAs or GaAs cover layers grown by molecular beam epitaxy (MBE) have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL) measurements. The TEM and AFM images show that the surface stress of the InAs QDs was suppressed by overgrowth of a InxGa1-xAs covering layer on the top of the QDs and the uniformity of the QDs preserved. PL measurements reveal that red shifts of the PL emission due to the reduction of the surface strain of the InAs islands was observed and the temperature sensitivity of the PL emission energy was suppressed by overgrowth of InxGa1-xAs layers compared to that by overgrowth of GaAs layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs self-organized quantum dots (QDs) grown on annealed low temperature GaAs (LT-GaAs) epi-layer were investigated by transmission electron microscopy (TEM) and photoluminescence (PL) measurement. TEM showed that QDs formed on annealed LT-GaAs epi-layer have a smaller size and a higher density than QDs formed on normal GaAs buffer layer. In addition, the PL spectra analysis showed that the LT-GaAs epi-layer resulted in a blue shift in peak energy, and a narrower linewidth in the PL peak. The differences were attributed to the point defects and As precipitates in annealed LT-GaAs epi-layer for the point defects and As precipitates change the strain field of the surface. The results provide a method to improve the uniformity and change the energy band structure of the QDs by controlling the defects in the LT-GaAs epi-layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for oxidising porous silicon to obtain thick SiO2 as the cladding layer of silicon-based silica waveguides is presented. The experimental results of oxidation are given. The following conclusions are drawn: the oxidation rate of porous silicon is several orders higher than that of bulk silicon, the appropriate temperature variation rate during oxidation combined with proper porosity can prevent SiO2 on silicon substrates from cracking. and a 25 mu M thick silicon dioxide layer has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the optical and structural properties of InAs/GaAs QDs covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) layer using transmission electron microscopy, photoluminescence (PL) spectra and atomic force microscopy. We find that the strain reduces in the growth direction of InAs islands covered by InGaAs instead of GaAs layer. Significant redshift of PL peak energy and narrowing of PL linewidth are observed for the InAs QDs covered by 3 nm thick InGaAs layer. In addition, atomic force microscopy measurements indicate that the InGaAs islands will nucleate on top of InAs quantum dots, when 3 nm In0.3Ga0.7As overgrowth layer is deposited. This result can well explain the PL intensify degradation and linewidth increment of quantum dots with a higher In-mole-fraction InGaAs layer. The energy gap change of InAs QDs covered by InGaAs may be explained in terms of reducing strain, suppressing compositional mixing and increasing island height. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new alternative method to grow the relaxed Ge0.24Si0.76 layer with a reduced dislocation density by ultrahigh vacuum chemical vapor deposition is reported in this paper. A 1000-Angstrom Ge0.24Si0.76 layer was first grown on a Si(100) substrate. Then a 500-Angstrom Si layer and a subsequent 5000-Angstrom Ge0.24Si0.76 overlayer followed. All these three layers were grown at 600 degrees C. After being removed from the growth system to air, the sample was first annealed at 850 degrees C for 30 min, and then was investigated by cross-sectional transmission electron microscopy and Rutherford backscattering spectroscopy. It is shown that the 5000-Angstrom Ge0.24Si0.76 thick over layer is perfect, and most of the threading dislocations are located in the embedded thin Si layer and the lower 1000-Angstrom Ge0.24Si0.76 layer. The relaxation ratio of the over layer is deduced to be 0.8 from Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si(100) and Si(lll) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1 degrees, while the minimum is 0.353 degrees. This result is better than the minimum FWHM (about 2 degrees) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(lll).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room temperature Raman spectra of the hexagonal GaN epilayer grown on [111]- oriented MgAl2O4 substrate were measured in various backscattering and right angle scattering geometries. All of the symmetry-allowed optical phonon modes were observed except the E-2 (low frequency) mode. The quasitransverse and quasilongitudinal modes were also observed in the x(zx)z and x(yy)z configurations, which are the mixed modes of pure transverse and longitudinal modes with A(1) and E-1 symmetry, respectively. (C) 1999 American Institute of Physics. [S0021-8979(99)01416-4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonized buffer layers were formed with C2H4 on Si(100) and Si(111) substrates using different methods and SIC epilayers were grown on each buffer layer at 1050 degrees C with simultaneous supply of C2H4 and Si2H6. The structure of carbonized and epitaxy layers was analyzed with in situ RHEED. The buffer layers formed at 800 degrees C were polycrystalline on both Si(100) and Si(111) substrates whereas they were single crystals, with twins on Si(100) and without tu ins on Si(111)substrates. when formed with a gradual rise in substrate temperature from 300 degrees C to growth temperature. Raising the substrate temperature slowly results in the formation of more twins. Epilayers grown on carbonized polycrystalline lavers are polycrystalline. Single crystal epilayers without twins grow on single crystalline buffer layers without twins or with a few twins. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum wires were formed in the 6-period InAs/In0.52Al0.48As structure on InP(0 0 1) grown by molecular beam epitaxy. The structure was characterized with transmission electron microscopy. It was found that the lateral periodic compositional modulation in the QWR array was in the [1 (1) over bar 0] direction and layer-ordered along the specific orientation deviating from the [0 0 1] growth direction by about 30 degrees. This deviating angle is consistent with the calculation of the distribution of elastic distortion around quantum wires in the structure using the finite element technique. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel idea of InAlAs native oxide utilized to replace the p-n-p-n thyristor blocking layer and improve the high-temperature performance of buried heterostructure InGaAsP-InP laser is first proposed and demonstrated. A characteristic temperature (T-0) of 50 K is achieved from an InA1As native oxide buried heterostructure (NOBH) InGaAsP-InP multiquantum-well laser with 1.5-mu m-wide diode leakage passage path. The threshold current and slope efficiency of NOBH laser changes from 5.6 mA, 0.23 mW/mA to 28 mA, 0.11 mW/mA with the operating temperature changing from 20 degrees C to 100 degrees C. It is comparable to conventional p-n reverse biased junction BH laser with minimized diode leakage current, and is much better than the buried ridge strip with proton implanted laterally confinement laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An InAlAs native oxide is used to replace the p-n reverse-biased junction in a conventional buried heterostructure InP-based laser. This technique reduces the number of regrowth steps and eliminates leakage current under high-temperature operation. The InAlAs native oxide buried heterostructure (NOBH) laser with strain-compensated InGaAsP/InP multiple quantum well active layers has a threshold current of 5.6 mA, a slope efficiency of 0.23 mW/mA, and a linear power up to 22.5 mW with a HR-coated facet. It exhibits single transverse mode with lasing wavelength at 1.532 mu m. A characteristic temperature (T-0) of 50 K is obtained from the NOBH laser with a nonoptimized oxide layer width. (C) 1998 American Institute of Physics. [S0003-6951(98)01352-7].