988 resultados para Constructivism (Learning)
Resumo:
BACKGROUND: E-learning techniques are spreading at great speed in medicine, raising concerns about the impact of adopting them. Websites especially designed to host courses are becoming more common. There is a lack of evidence that these systems could enhance student knowledge acquisition. GOAL: To evaluate the impact of using dedicated-website tools over cognition of medical students exposed to a first-aid course. METHODS: Prospective study of 184 medical students exposed to a twenty-hour first-aid course. We generated a dedicated-website with several sections (lectures, additional reading material, video and multiple choice exercises). We constructed variables expressing the student's access to each section. The evaluation was composed of fifty multiple-choice tests, based on clinical problems. We used multiple linear regression to adjust for potential confounders. RESULTS: There was no association of website intensity of exposure and the outcome - beta-coeficient 0.27 (95%CI - 0.454 - 1.004). These findings were not altered after adjustment for potential confounders - 0.165 (95%CI -0.628 - 0.960). CONCLUSION: A dedicated website with passive and active capabilities for aiding in person learning had not shown association with a better outcome.
Resumo:
The prevailing undergraduate medical training process still favors disconnection and professional distancing from social needs. The Brazilian Ministries of Education and Health, through the National Curriculum Guidelines, the Incentives Program for Changes in the Medical Curriculum (PROMED), and the National Program for Reorientation of Professional Training in Health (PRO-SAÚDE), promoted the stimulus for an effective connection between medical institutions and the Unified National Health System (SUS). In accordance to the new paradigm for medical training, the Centro Universitário Serra dos Órgãos (UNIFESO) established a teaching plan in 2005 using active methodologies, specifically problem-based learning (PBL). Research was conducted through semi-structured interviews with third-year undergraduate students at the UNIFESO Medical School. The results were categorized as proposed by Bardin's thematic analysis, with the purpose of verifying the students' impressions of the new curriculum. Active methodologies proved to be well-accepted by students, who defined them as exciting and inclusive of theory and practice in medical education.
Resumo:
This study evaluates the use of role-playing games (RPGs) as a methodological approach for teaching cellular biology, assessing student satisfaction, learning outcomes, and retention of acquired knowledge. First-year undergraduate medical students at two Brazilian public universities attended either an RPG-based class (RPG group) or a lecture (lecture-based group) on topics related to cellular biology. Pre- and post-RPG-based class questionnaires were compared to scores in regular exams and in an unannounced test one year later to assess students' attitudes and learning. From the 230 students that attended the RPG classes, 78.4% responded that the RPG-based classes were an effective tool for learning; 55.4% thought that such classes were better than lectures but did not replace them; and 81% responded that they would use this method. The lecture-based group achieved a higher grade in 1 of 14 regular exam questions. In the medium-term evaluation (one year later), the RPG group scored higher in 2 of 12 questions. RPG classes are thus quantitatively as effective as formal lectures, are well accepted by students, and may serve as educational tools, giving students the chance to learn actively and potentially retain the acquired knowledge more efficiently.
Resumo:
INTRODUCTION: Web-based e-learning is a teaching tool increasingly used in many medical schools and specialist fields, including ophthalmology. AIMS: this pilot study aimed to develop internet-based course-based clinical cases and to evaluate the effectiveness of this method within a graduate medical education group. METHODS: this was an interventional randomized study. First, a website was built using a distance learning platform. Sixteen first-year ophthalmology residents were then divided into two randomized groups: one experimental group, which was submitted to the intervention (use of the e-learning site) and another control group, which was not submitted to the intervention. The students answered a printed clinical case and their scores were compared. RESULTS: there was no statistically significant difference between the groups. CONCLUSION: We were able to successfully develop the e-learning site and the respective clinical cases. Despite the fact that there was no statistically significant difference between the access and the non access group, the study was a pioneer in our department, since a clinical case online program had never previously been developed.
Resumo:
The dissertation seeks to explore how to improve users‘ adoption of mobile learning in current education systems. Considering the difference between basic and tertiary education in China, the research consists of two separate but interrelated parts, which focus on the use of mobile learning in basic and tertiary education contexts, respectively. In the dissertation, two adoption frameworks are developed based on previous studies. The frameworks are then evaluated using different technologies. Concerning mobile learning use in basic education settings, case study methodology is utilized. A leading provider of mobile learning services and products in China, Noah Ltd., is investigated. Multiple sources of evidence are collected to test the framework. Regarding mobile learning adoption in tertiary education contexts, survey research methodology is utilized. Based on 209 useful responses, the framework is evaluated using structural equation modelling technology. Four proposed determinants of intention to use are evaluated, which are perceived ease of use, perceived near-term usefulness, perceived ong-term usefulness and personal innovativeness. The dissertation provides a number of new insights for both researchers and practitioners. In particular, the dissertation specifies a practical solution to deal with the disruptive effects of mobile learning in basic education, which keeps the use of mobile learning away from the schools across such as European countries. A list of new and innovative mobile learning technologies is systematically introduced as well. Further, the research identifies several key factors driving mobile learning adoption in tertiary education settings. In theory, the dissertation suggests that since the technology acceptance model is initiated in work-oriented innovations by testing employees, it is not necessarily the best model for studying educational innovations. The results also suggest that perceived longterm usefulness for educational systems should be as important as perceived usefulness for utilitarian systems, and perceived enjoyment for hedonic systems. A classification based on the nature of systems purpose (utilitarian, hedonic or educational) would contribute to a better understanding of the essence of IT innovation adoption.
Resumo:
In the fierce competition of today‟s business world an organization‟s capacity to learn maybe its only competitive advantage. This research aims at increasing the understanding on how organizational learning from the customer happens in technology companies. In doing so it provides a synthesized definition of organizational learning and investigates processes of organizational learning within technology companies. A qualitative research method and in-depth interviews with different sized high technology companies, as applied here, enables in-depth study of the learning processes. Research contributes to the understanding of what type of knowledge firms acquire, how new knowledge is transferred and used in a learning firm‟s routines and processes. Research findings show that SMEs and large size companies also, depending on their position in the software value chain, consider different knowledge types as most important and that they use different learning methods to acquire knowledge from their customers.
Resumo:
The electronic learning has become crucial in higher education with increased usage of learning management systems as a key source of integration on distance learning. The objective of this study is to understand how university teachers are influenced to use and adopt web-based learning management systems. Blackboard, as one of the systems used internationally by various universities is applied as a case. Semi-structured interviews were made with professors and lecturers who are using Blackboard at Lappeenranta University of Technology. The data collected were categorized under constructs adapted from Unified Theory of Acceptance and Use of Technology (UTAUT) and interpretation and discussion were based on reviewed literature. The findings suggest that adoption of learning management systems by LUT teachers is highly influenced by perceived usefulness, facilitating conditions and gained experience. The findings also suggest that easiness of using the system and social influence appear as medium influence of adoption for teachers at LUT.
Resumo:
This study was conducted in order to learn how companies’ revenue models will be transformed due to the digitalisation of its products and processes. Because there is still only a limited number of researches focusing solely on revenue models, and particularly on the revenue model change caused by the changes at the business environment, the topic was initially approached through the business model concept, which organises the different value creating operations and resources at a company in order to create profitable revenue streams. This was used as the base for constructing the theoretical framework for this study, used to collect and analyse the information. The empirical section is based on a qualitative study approach and multiple-case analysis of companies operating in learning materials publishing industry. Their operations are compared with companies operating in other industries, which have undergone comparable transformation, in order to recognise either similarities or contrasts between the cases. The sources of evidence are a literature review to find the essential dimensions researched earlier, and interviews 29 of managers and executives at 17 organisations representing six industries. Based onto the earlier literature and the empirical findings of this study, the change of the revenue model is linked with the change of the other dimen-sions of the business model. When one dimension will be altered, as well the other should be adjusted accordingly. At the case companies the transformation is observed as the utilisation of several revenue models simultaneously and the revenue creation processes becoming more complex.
Resumo:
Traditionally simulators have been used extensively in robotics to develop robotic systems without the need to build expensive hardware. However, simulators can be also be used as a “memory”for a robot. This allows the robot to try out actions in simulation before executing them for real. The key obstacle to this approach is an uncertainty of knowledge about the environment. The goal of the Master’s Thesis work was to develop a method, which allows updating the simulation model based on actual measurements to achieve a success of the planned task. OpenRAVE was chosen as an experimental simulation environment on planning,trial and update stages. Steepest Descent algorithm in conjunction with Golden Section search procedure form the principle part of optimization process. During experiments, the properties of the proposed method, such as sensitivity to different parameters, including gradient and error function, were examined. The limitations of the approach were established, based on analyzing the regions of convergence.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.