996 resultados para Concentration actions
Resumo:
Serotonin is a neurotransmitter that modulates several functions, such as food intake, energy expenditure, motor activity, mood and sleep. Acute exhaustive endurance exercise increases the synthesis, concentration and metabolism of serotonin in the brain. This phenomenon could be responsible for central fatigue after prolonged and exhaustive exercise. However, the effect of chronic exhaustive training on serotonin is not known. The present study was conducted to examine the effect of exhaustive endurance training on performance and serotonin concentrations in the hypothalamus of trained rats. Rats were divided into three groups: sedentary rats (SED), moderately trained rats (MOD) and exhaustively trained rats (EXT), with an increase of 200% in the load carried during the final week of training. Hypothalamic serotonin concentrations were similar between the SED and MOD groups, but were higher in the EXT group (P < 0.05). Performance was lower in the EXT group compared with the MOD group (P < 0.05). Thus, the present study demonstrates that exhaustive training increases serotonin concentrations in the hypothalamus, together with decreased endurance performance after inadequate recovery time. However, the mechanism underlying these changes remains unknown.
Resumo:
Laboratory strains and natural isolates of Escherichia coli differ in their level of stress resistance due to strain variation in the level of the sigma factor sigma(S) (or RpoS), the transcriptional master controller of the general stress response. We found that the high level of RpoS in one laboratory strain (MC4100) was partially dependent on an elevated basal level of ppGpp, an alarmone responding to stress and starvation. The elevated ppGpp was caused by two mutations in spoT, a gene associated with ppGpp synthesis and degradation. The nature of the spoT allele influenced the level of ppGpp in both MC4100 and another commonly used K-12 strain, MG1655. Introduction of the spoT mutation into MG1655 also resulted in an increased level of RpoS, but the amount of RpoS was lower in MG1655 than in MC4100 with either the wild-type or mutant spoT allele. In both MC4100 and MG1655, high ppGpp concentration increased RpoS levels, which in turn reduced growth with poor carbon sources like acetate. The growth inhibition resulting from elevated ppGpp was relieved by rpoS mutations. The extent of the growth inhibition by ppGpp, as well as the magnitude of the relief by rpoS mutations, differed between MG1655 and MC4100. These results together suggest that spoT mutations represent one of several polymorphisms influencing the strain variation of RpoS levels. Stress resistance was higher in strains with the spoT mutation, which is consistent with the conclusion that microevolution affecting either or both ppGpp and RpoS can reset the balance between self-protection and nutritional capability, the SPANC balance, in individual strains of E coli.
Resumo:
Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).
Resumo:
We consider Anosov actions of R(k), k >= 2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of R(k) has dimension one. We prove that if the ambient manifold has dimension greater than k + 2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.
Resumo:
We derive a closed form expression for the long wavelength limit of the effective action for hard thermal loops in an external gravitational field. It is a function of the metric, independent of time derivatives. It is compared and contrasted with the static limit, and with the corresponding limits in an external Yang-Mills field. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background held at finite temperature, which can be used to determine the finite temperature effective action for the system. As applications, we determine the complete one loop finite temperature effective actions for (0 + 1)-dimensional QED as well as the Schwinger model. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The photoactivation of a photosensitizer is the initial step in photodynamic therapy (PDT) where photochemical reactions result in the production of reactive oxygen species and eventually cell death. In addition to oxidizing biomolecules, some of these photochemical reactions lead to photosensitizer degradation at a rate dependent on the oxygen concentration among other factors. We investigated photodegradation of Photogem A (R) (28 mu M), a hematoporphyrin derivative, at different oxygen concentrations (9.4 to 625.0 mu M) in aqueous solution. The degradation was monitored by fluorescence spectroscopy. The degradation rate (M/s) increases as the oxygen concentration increases when the molar ratio of oxygen to PhotogemA (R) is greater than 1. At lower oxygen concentrations (< 25 mu M) an inversion of this behavior was observed. The data do not fit a simple kinetic model of first-order dependence on oxygen concentration. This inversion of the degradation rate at low oxygen concentration has not previously been demonstrated and highlights the relationship between photosensitizer and oxygen concentrations in determining the photobleaching mechanism(s). The findings demonstrate that current models for photobleaching are insufficient to explain completely the effects at low oxygen concentration.
Resumo:
In a previous paper, we developed a phenomenological-operator technique aiming to simplify the estimate of losses due to dissipation in cavity quantum electrodynamics. In this paper, we apply that technique to estimate losses during an entanglement concentration process in the context of dissipative cavities. In addition, some results, previously used without proof to justify our phenomenological-operator approach, are now formally derived, including an equivalent way to formulate the Wigner-Weisskopf approximation.
Resumo:
Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the similar to 0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 degrees C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 degrees C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr(3+) ions exhibit luminescent features not present in other Cr(3+)-containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr(3+)-related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.
Resumo:
The generalized Birnbaum-Saunders (GBS) distribution is a new class of positively skewed models with lighter and heavier tails than the traditional Birnbaum-Saunders (BS) distribution, which is largely applied to study lifetimes. However, the theoretical argument and the interesting properties of the GBS model have made its application possible beyond the lifetime analysis. The aim of this paper is to present the GBS distribution as a useful model for describing pollution data and deriving its positive and negative moments. Based on these moments, we develop estimation and goodness-of-fit methods. Also, some properties of the proposed estimators useful for developing asymptotic inference are presented. Finally, an application with real data from Environmental Sciences is given to illustrate the methodology developed. This example shows that the empirical fit of the GBS distribution to the data is very good. Thus, the GBS model is appropriate for describing air pollutant concentration data, which produces better results than the lognormal model when the administrative target is determined for abating air pollution. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The concept of a partial projective representation of a group is introduced and studied. The interaction with partial actions is explored. It is shown that the factor sets of partial projective representations over a field K are exactly the K-valued twistings of crossed products by partial actions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Potentially useful stead-state fluorimetric technique was used to determine the critical micellar concentrations (CMC(1) and CMC(2)) for two micellar media, one formed by SDS and the other by SDS/Brij 30. A comparative study based on conductimetric and surfacial tension measurements suggests that the CMC(1) estimated by the fluorimetric method is lower than the value estimated by these other techniques. Equivalent values were observed for SDS micelles without Brij 30 neutral co-surfactant. The use of acridine orange as fluorescent probe permitted to determine both CMC(1) and CMC(2). Based on it an explanation on aspects of micelle formation mechanism is presented, particularly based on a spherical and a rod like structures.
Resumo:
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies. (C) 2009 Elsevier Ltd. All rights reserved.