1000 resultados para C. litoralis
Resumo:
Oocyte maturation and egg fertilization in both vertebrates and invertebrates are marked by orchestrated cytoplasmic translocation of secretory vesicles known as cortical granules. It is thought that such redistribution of cellular content is critical for asymmetrical cell division during early development, but the mechanism and regulation of the process is poorly understood. Here we report the identification, purification and cDNA cloning of a C-type lectin from oocytes of a freshwater fish species gibel carp (Carassius auratus gibelio). The purified protein has been demonstrated to have lectin activity and to be a Ca2+-dependent C-type lectin by hemagglutination activity assay. Immunocytochemistry revealed that the lectin is associated with cortical granules, gradually translocated to the cell surface during oocyte maturation, and discharged to the egg envelope upon fertilization. Interestingly, the lectin becomes phosphorylated on threonine residues upon induction of exocytosis by fertilization and returns to its original state after morula stage of embryonic development, suggesting that this posttranslational modification may represent a critical molecular switch for early embryonic development. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
We investigate the uniaxial strain effect in the c-plane on optical properties of wurtzite GaN based on k center dot p theory, the spin-orbit interactions are also taken into account. The energy dispersions show that the uniaxial strain in the c-plane gives an anisotropic energy splitting in the k(x) - k(y) plane, which can reduce the density of states. The uniaxial strain also results in giant in-plane optical polarization anisotropy, hence causes the threshold carrier density reduced. We clarify the relations between the uniaxial strain and the optical polarization properties. As a result, it is suggested that the compressive uniaxial strain perpendicular to the laser cavity direction in the c-plane is one of the preferable approaches for the effcient improvement of GaN-based laser performance.
Resumo:
The optical properties of the strained wurtzite GaN are investigated theoretically within the nearest neighbor tight-binding method. The piezoelectric effect is also taken into account. The empirical rule has been used in the strained band-structure calculation. The results show that the excitonic transition energies are anisotropic in the c-plane in a high electronic concentration system and have a 60 degrees periodicity, which is in agreement with experiment. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001937]
Resumo:
Tetragonal PbTiO3 under uniaxial stress along the c-axis is investigated from first-principles. The structural parameters, polarization, and squares of the lowest optical phonon frequencies for E(1TO) and A(1)(1TO) modes at Gamma show abrupt changes near a stress sigma(c) of 1.04 GPa, which is related to the dramatic change of elastic constant c(33) resulting from the uniaxial stress applied along the c-axis. We also find that the uniaxial compressive stress could enhance the piezoelectric stress coefficients, whereas the uniaxial tensile stress could enhance the piezoelectric strain coefficients. It is also found that when the magnitude of uniaxial compressive stress sigma(33) is greater than 12 GPa, PbTiO3 is transformed to the paraelectric tetragonal phase.
Resumo:
Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10(-4) J m(-2). We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.
Resumo:
The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.
Resumo:
The growth direction of ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD) is modulated by pretreatment of (001) SMO3 (STO) substrates. ZnO films show a-oriented smooth surface with epitaxial relationship of < 001 > ZnO//< 110 > STO on as-received SfO, and c-axis columnar growth with < 010 > ZnO//< 110 > STO on etched STO, respectively. The orientation alteration of ZnO films is supposed to be caused by the change of STO surface polarity. In addition, the c-ZnO films exhibit an enhanced photoluminescence (PL) intensity due to the improved crystal quality, while the blueshift of PL peak is attributed to the smaller tensile strain. These results show that high quality c-ZnO, which is essential for electronic and optoelectronic device applications, can be grown on (001) SfO by MOCVD. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Based on our experimental research on diphasic silicon films, the parameters such as absorption coefficient, mobility lifetime product and bandgap were estimated by means of effective-medium theory. And then computer simulation of a-Si: H/mu c-Si: H diphasic thin film solar cells was performed. It was shown that the more crystalline fraction in the diphasic silicon films, the higher short circuit density, the lower open-circuit voltage and the lower efficiency. From the spectral response, we can see that the response in long wave region was improved significantly with increasing crystalline fraction in the silicon films. Taking Lambertian back refraction into account, the diphasic silicon films with 40%-50% crystalline fraction was considered to be the best intrinsic layer for the bottom solar cell in micromorph tandem.
Resumo:
In this study, we report comparative luminescence properties of multi-layer InGaN quantum dots grown on C- and R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). High-density InGaN quantum dots (QDs) are formed on GaN templates by decreasing the growth temperature and increasing the adatom hopping-barrier through surface passivation. Atomic force microscopy (AFM) has been employed to estimate the size and height of these dots. Photoluminescence (PL) spectra recorded from (1120) InGaN QDs/(1102) sapphire show much stronger emission intensity compared to spectra recorded from (0001) InGaN QDs/(0001) sapphire. Due to the absence of strong spontaneous polarization and piezoelectric field, such (1150) InGaN QDs in the active layers would lead to high efficiency light emitting devices. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hetero-junction solar cells with an me-Si: H window layer were achieved. The open voltage is increased while short current is decreased with increasing the mc-Si:H layer's thickness of emitter layer. The highest of V-oc of 597 mV has obtained. When fixed the thickness of 30 nm, changing the N type from amorphous silicon layer to micro-crystalline layer, the efficiency of the hetero-junction solar cells is increased. Although the hydrogen etching before deposition enables the c-Si substrates to become rough by AFM images, it enhances the formation of epitaxial-like micro-crystalline silicon and better parameters of solar cell can be obtained by implying this process. The best result of efficiency is 13.86% with the V-oc of 549.8 mV, J(sc) of 32.19 mA center dot cm(-2) and the cell's area of 1 cm(2).
Resumo:
National Natural Science Foundation of China 60836002 10674130 60521001;Major State Basic Research of China 2007CB924903;Chinese Academy of Sciences KJCX2.YW.W09-1
Resumo:
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. C=O compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented. (c) 2005 Elsevier B.V. All rights reserved.