998 resultados para 111 SI
Resumo:
A photodilatation effect of undoped a-Si:H films has been discovered by a differential dilatometric method. The film thickness has been found to increase instantaneously when the sample is exposed to light. The dilatation weakens with illumination time, following a stretched exponential law, and finally reaches a saturation value. The dilatation disappears when light is off. The results unambiguously show that the whole structure of the film becomes less compact and less stable under light exposure. The metastable change (Staebler-Wronski effect) could be a redistribution of different configurations after this photodilatation in the a-Si:H films.
Resumo:
The surface structures of the Si(113)-(1 X 1), Si(113)-(3 X 1) and Si(113)-(3 X 2) have been studied theoretically by means of an ab initio quantum chemical CNDO method. We address not only the importance of the surface energy but also the energy minimization and the barrier height in the different structural conversion. We found that (1) the relaxed Si(113)-(1 X 1) structure. (2) the Si(113)-(3 X 1) close to the Si(113) Ranke (3 X 1)-2 model; (3) the atomic positions of Si(113)-(3 X 2) corrugated arrangement. (C) 1997 Elsevier Science B.V.
Resumo:
The crystallographic tilt of the epilayers with respect to their substrates has been observed in many heteroepitaxial systems. Many models have been proposed to explain this phenomenon, but none of them is suitable for the large mismatched system, such as GaAs/Si. Here a new model is proposed for GaAs/Si epilayers, which can also be used in other large mismatched systems. The magnitude of the tilt calculated from this model coincide well with the experimental results. Especially, this model can correctly predict the tilt direction of the GaAs/Si epilayers.
Resumo:
Films of GaN have been grown using a modified MBE technique in which the active nitrogen is supplied from an RF plasma source. Wurtzite films grown on (001) oriented GaAs substrates show highly defective, ordered polycrystalline growth with a columnar structure, the (0001) planes of the layers being parallel to the (001) planes of the GaAs substrate. Films grown using a coincident As flux, however, have a single crystal zinc-blende growth mode. They have better structural and optical properties. To improve the properties of the wurtzite films we have studied the growth of such films on (111) oriented GaAs and GaP substrates. The improved structural properties of such films, assessed using X-ray and TEM method, correlate with better low-temperature FL.
Resumo:
We present photoelectron spectroscopic and low energy electron diffraction measurements of water adsorption on flat Si samples of the orientations (001), (115), (113), (5,5,12) and (112) as well as on curved samples covering continuously the ranges (001)-(117) and (113)-(5,5,12)-(112). On all orientations, water adsorption is dissociative (OH and H) and non-destructive. On Si(001) the sticking coefficient S and the saturation coverage Theta(sat) are largest. On Si(001) and for small miscuts in the [110]-azimuth, S is constant nearly up to saturation which proves that the kinetics involves a weakly bound mobile precursor state. For (001)-vicinals with high miscut angles (9-13 degrees), the step structure breaks down, the precursor mobility is affected and the adsorption kinetics changed. On (115), (113), (5,5,12) and (112), the values of S and Theta(sat) are smaller which indicates that not all sites are able to dissociate and bind water. For (113) the shape of the adsorption curves Theta versus exposure shows the existence of two adsorption processes, one with mobile precursor kinetics and one with Langmuir-like kinetics. On (5,5,12), two processes with mobile precursor kinetics are observed which are ascribed to adsorption on different surface regions within the large surface unit cell. From the corresponding values of S and Theta(sat), data for structure models are deduced. (C) 1997 Elsevier Science B.V.
Resumo:
Because of Si-Ge interdiffusion in the Si-SiGe interface during the growth process, the square-wave refractive index distribution of a SiGe-Si multiple-quantum-web (MQW) will become smooth. In order to simulate the actual refractive index profile, a staircase approximation is applied. Based on this approach, the dispersion equation of the MQW waveguide is obtained by using a transfer matrix method, The effects of index changes caused by the interdiffusion on the optical field and the characteristics of the photodetector are evaluated by solving the dispersion equation, It is shown that the Si-Ge interdiffusion can result in a reduction of the effective absorption coefficient and the quantum efficiency.
Resumo:
A dissociated screw dislocation parallel to the interface was found in the epitaxial layer of the Ge0.17Si0.83 Si(001) system. It is shown that this dissociated screw dislocation which consists of two 30 degrees partials can relieve misfit strain energy, and the relieved misfit energy is proportional to the width of the stacking fault between the two partials.
Assessment of the structural properties of GaAs/Si epilayers using X-ray (004) and (220) reflections
Resumo:
We improved the method previously used to determine the lattice constants and misorientation of GaAs/Si by recording the patterns of X-ray (004) and (220) reflections. The (220) reflection was measured from the (110) cross section of a GaAs/Si epilayer. The structural properties of the GaAs/Si epilayers grown by metal-organic chemical-vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were investigated. The rotation angle of GaAs/Si epilayers grown by MOCVD using an a-Si buffer layer is very small and the lattice constants of these GaAs/Si epilayers agree quite well with elastic theory.
Resumo:
The surface reconstruction on Si(337) at room temperature has been studied by low energy electron diffraction (LEED). It has been found that: (I) the Si(337) gave a clear LEED pattern which indicates the existence of another high index stable surface besides Si(113); (II) in addition to a strong Si(337)-(1 X 1), we observed for the first time a (2 X 1) LEED pattern indicating a surface reconstruction along the [1(1) over bar0$] direction; (III) a surface model has been proposed for the observed Si(337)-(2 X 1) structure.
Resumo:
Surface reconstructions on Si(113) induced by dissociated hydrogen adsorption have been studied using low energy electron diffraction (LEED). It has been found that: (1) at 300 K and 80 K temperatures, with the increase of hydrogen coverage on the surface, the (3 x 1) phase transferred continuously into a hydrogen saturated (1 x 1)-2H phase; (2) flashing of the (1 x 1)-2H surface at about 1100 degrees C resulted in a complete new phase of(1 x 3) and further annealing of the sample at 1250 degrees C gave back the starting surface of (3 x 1); (3) saturated hydrogen adsorption at a sample temperature of 700 degrees C resulted in a stable new phase of(1 x 2)-H and further saturation doses of hydrogen at other temperatures below 700 degrees C did not change the (1 x 2) LEED pattern; (4) annealing of the (I x 2)-H surface in the same manner as (2) gave similar results.