983 resultados para spatial practices
Resumo:
Background: Sick leave prescribing is a common task of doctors and being on sick leave results in notable economic consequences to society. However, there appears to be limited research into this field and the factors affecting sick leave prescribing practices of doctors. Aims: To examine the prescribing of sick leave by doctors and dentists, the extent of variation in practices, whether clinician-related factors and local structural factors affect variation, and the economic consequences of varying practices. Materials and methods: Questionnaire studies with 19 or 16 hypothetical patient cases were conducted among 165 primary health care (PHC) physicians, 356 occupational health care (OHC) physicians, 338 surgeons and 1132 dentists. Results: The difference between the lowest and the highest number of sick leave days prescribed for the 19 patient cases was almost four-fold in PHC physicians and surgeons and eight-fold in OHC physicians, which represents a societal cost of tens of thousands of euros. Some dentists did not prescribe sick leave to any of the 16 patient cases, and some prescribed nearly a hundred days altogether. The overall number of sick leave days OHC physicians prescribed was smaller than in PHC physicians. More days of sick leave were prescribed by those working in smaller municipalities than larger population centres. Conclusion: There was considerable variation in the sick leave prescribing practices of Finnish health care professionals. This means that patients may not receive equal social benefits. Sick leave carries considerable economic consequences, and unifying prescribing practices could bring significant cost savings to society.
Resumo:
The number of persons with visual impairment in Tanzania is estimated to over 1.6 million. About half a million of these persons are children aged 7-13. Only about 1% of these children are enrolled in schools. The special schools and units are too few and in most cases they are far away from the children’s homes. More and more regular schools are enrolling children with visual impairment, but the schools lack financial resources, tactile teaching materials and trained special education teachers. Children with visual impairment enrolled in regular schools seldom get enough support and often fail in examinations. The general aim of this study was to contribute to increased knowledge and understanding about how teachers can change their teaching practices and thus facilitate the learning of children with visual impairment included in regular classrooms as they participate in an action research project. The project was conducted in a primary school in a poor rural region with a high frequency of blindness and visual impairment. The school was poorly resourced and the average number of pupils per class was 90. The teachers who participated in the collaborative action research project were the 14 teachers who taught blind or visually impaired pupils in grades 4 and 6, in total 6 pupils. The action research project was conducted during a period of 6 months and was carried out in five cycles. The teachers were actively involved in all the project activities; identifying challenges, planning solutions, producing teaching materials, reflecting on outcomes, collaborating and evaluating. Empirical data was collected with questionnaires, interviews, observations and focus group discussions. The findings of the study show that the teachers managed to change their teaching practices through systematic reflection, analysis and collaboration. The teachers produced a variety of tactile teaching materials, which facilitated the learning of the pupils with visual impairment. The pupils learned better and felt more included in the regular classes. The teachers gained new knowledge and skills. They grew professionally and started to collaborate with each other. The study contributes to new knowledge of how collaborative action research can be conducted in the area of special education in a Tanzanian school context. The study has also relevance to the planning of school-based professional development programs and teacher education programs in Tanzania and in other low-income countries. The results also point at strategies which can promote inclusion of children with disabilities in regular schools.
Resumo:
The report 'Conditions and practices in the commercialisation of innovation in wood industry' has been written as a part of the Wood Academy project. The report analyses the commercialisation conditions and practices of wood industry by utilising product categorisation based on a conceptual schema which combines the aspects of the transfer of the procession of utility and the degree of form/service utility (or value-added) created or provided by the company. Open innovation approaches help to perceive the possible new product and service innovations as well as the new business models and earning logics in the industry. The report also contains brief company cases to demonstrate theory-to-practice and showcase company examples from successful Finnish companies.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
Simple reaction time (SRT) in response to visual stimuli can be influenced by many stimulus features. The speed and accuracy with which observers respond to a visual stimulus may be improved by prior knowledge about the stimulus location, which can be obtained by manipulating the spatial probability of the stimulus. However, when higher spatial probability is achieved by holding constant the stimulus location throughout successive trials, the resulting improvement in performance can also be due to local sensory facilitation caused by the recurrent spatial location of a visual target (position priming). The main objective of the present investigation was to quantitatively evaluate the modulation of SRT by the spatial probability structure of a visual stimulus. In two experiments the volunteers had to respond as quickly as possible to the visual target presented on a computer screen by pressing an optic key with the index finger of the dominant hand. Experiment 1 (N = 14) investigated how SRT changed as a function of both the different levels of spatial probability and the subject's explicit knowledge about the precise probability structure of visual stimulation. We found a gradual decrease in SRT with increasing spatial probability of a visual target regardless of the observer's previous knowledge concerning the spatial probability of the stimulus. Error rates, below 2%, were independent of the spatial probability structure of the visual stimulus, suggesting the absence of a speed-accuracy trade-off. Experiment 2 (N = 12) examined whether changes in SRT in response to a spatially recurrent visual target might be accounted for simply by sensory and temporally local facilitation. The findings indicated that the decrease in SRT brought about by a spatially recurrent target was associated with its spatial predictability, and could not be accounted for solely in terms of sensory priming.
Resumo:
Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.
Resumo:
Demand forecasting is one of the fundamental managerial tasks. Most companies do not know their future demands, so they have to make plans based on demand forecasts. The literature offers many methods and approaches for producing forecasts. Former literature points out that even though many forecasting methods and approaches are available, selecting a suitable approach and implementing and managing it is a complex cross-functional matter. However, it’s relatively rare that researches are focused on the differences in forecasting between consumer and industrial companies. The aim of this thesis is to investigate the potential of improving demand forecasting practices for B2B and B2C sectors in the global supply chains. Business to business (B2B) sector produces products for other manufacturing companies. On the other hand, consumer (B2C) sector provides goods for individual buyers. Usually industrial sector have a lower number of customers and closer relationships with them. The research questions of this thesis are: 1) What are the main differences and similarities in demand planning between B2B and B2C sectors? 2) How the forecast performance for industrial and consumer companies can be improved? The main methodological approach in this study is design science, where the main objective is to develop tentative solutions to real-life problems. The research data has been collected from a case company. Evaluation and improving in organizing demand forecasting can be found in three interlinked areas: 1) demand planning operational environment, 2) demand forecasting techniques, 3) demand information sharing scenarios. In this research current B2B and B2C demand practices are presented with further comparison between those two sectors. It was found that B2B and B2C sectors have significant differences in demand practices. This research partly filled the theoretical gap in understanding the difference in forecasting in consumer and industrial sectors. In all these areas, examples of managerial problems are described, and approaches for mitigating these problems are outlined.
Resumo:
The distribution and traits of fish are of interest both ecologically and socio-economically. In this thesis, phenotypic and structural variation in fish populations and assemblages was studied on multiple spatial and temporal scales in shallow coastal areas in the archipelago of the northern Baltic Proper. In Lumparn basin in Åland Islands, the fish assemblage displayed significant seasonal variation in depth zone distribution. The results indicate that investigating both spatial and temporal variation in small scale is crucial for understanding patterns in fish distribution and community structure in large scale. The local population of Eurasian perch Perca fluviatilis L displayed habitat-specific morphological and dietary variation. Perch in the pelagic zone were on average deeper in their body shape than the littoral ones and fed on fish and benthic invertebrates. The results differ from previous studies conducted in freshwater habitats, where the pelagic perch typically are streamlined in body shape and zooplanktivorous. Stable isotopes of carbon and nitrogen differed between perch with different stomach contents, suggesting differentiation of individual diet preferences. In the study areas Lumparn and Ivarskärsfjärden in Åland Islands and Galtfjärden in Swedish east coast, the development in fish assemblages during the 2000’s indicated a general shift towards higher abundances of small-bodied lower-order consumers, especially cyprinids. For European pikeperch Sander lucioperca L., recent declines in adult fish abundances and high mortalities (Z = 1.06–1.16) were observed, which suggests unsustainably high fishing pressure on pikeperch. Based on the results it can be hypothesized that fishing has reduced the abundances of large predatory fish, which together with bottom-up forcing by eutrophication has allowed the lower-order consumer species to increase in abundances. This thesis contributes to the scientific understanding of aquatic ecosystems with new descriptions on morphological and dietary adaptations in perch in brackish water, and on the seasonal variation in small-scale spatial fish distribution. The results also demonstrate anthropogenic effects on coastal fish communities and underline the urgency of further reducing nutrient inputs and regulating fisheries in the Baltic Sea region.
Resumo:
Drug management of hypertension has been a noticeable example of the influence of the pharmaceutical industry on prescription practices. The worldwide leading brands of blood pressure-lowering agents are angiotensin receptor-blocking agents, although they are considered to be simply substitutes of angiotensin-converting enzyme (ACE) inhibitors. Commercial strategies have been based on the results of clinical trials sponsored by drug companies. Most of them presented distortions in their planning, presentation or interpretation that favored the drugs from the sponsor, i.e., corporate bias. Atenolol, an ineffective blood pressure agent in elderly individuals, was the comparator drug in several trials. In a re-analysis of the INSIGHT trial, deaths appeared to have been counted twice. The LIFE trial appears in the title of more than 120 reproductions of the main and flawed trial, as a massive strategy of scientific marketing. Most guidelines have incorporated the corporate bias from the original studies, and the evidence from better designed studies, such as the ALLHAT trial, have been largely ignored. In trials published recently corporate influences have touched on ethical limits. In the ADVANCE trial, elderly patients with type 2 diabetes and cardiovascular disease or risk factors, allocated to placebo, were not allowed to use diuretic and full doses of an ACE inhibitor, despite the sound evidence of benefit demonstrated in previous trials. As a consequence, they had a 14% higher mortality rate than the participants allocated to the active treatment arm. This reality should be modified immediately, and a greater independence of the academy from the pharmaceutical industry is necessary.
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Resumo:
The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.
Resumo:
The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P < 0.05, ANOVA). Blue-yellow chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P < 0.05, ANOVA). Evoked potentials can be used reliably to evaluate chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus.
Differential effects of aging on spatial contrast sensitivity to linear and polar sine-wave gratings
Resumo:
Changes in visual function beyond high-contrast acuity are known to take place during normal aging. We determined whether sensitivity to linear sine-wave gratings and to an elementary stimulus preferentially processed in extrastriate areas could be distinctively affected by aging. We measured spatial contrast sensitivity twice for concentric polar (Bessel) and vertical linear gratings of 0.6, 2.5, 5, and 20 cycles per degree (cpd) in two age groups (20-30 and 60-70 years). All participants were free of identifiable ocular disease and had normal or corrected-to-normal visual acuity. Participants were more sensitive to Cartesian than to polar gratings in all frequencies tested, and the younger adult group was more sensitive to all stimuli tested. Significant differences between sensitivities of the two groups were found for linear (only 20 cpd; P<0.01) and polar gratings (all frequencies tested; P<0.01). The young adult group was significantly more sensitive to linear than to circular gratings in the 20 cpd frequency. The older adult group was significantly more sensitive to linear than to circular gratings in all spatial frequencies, except in the 20 cpd frequency. The results suggest that sensitivity to the two kinds of stimuli is affected differently by aging. We suggest that neural changes in the aging brain are important determinants of this difference and discuss the results according to current models of human aging.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
Preimplantation genetic diagnosis (PGD) was originally developed to diagnose embryo-related genetic abnormalities for couples who present a high risk of a specific inherited disorder. Because this technology involves embryo selection, the medical, bioethical, and legal implications of the technique have been debated, particularly when it is used to select features that are not related to serious diseases. Although several initiatives have attempted to achieve regulatory harmonization, the diversity of healthcare services available and the presence of cultural differences have hampered attempts to achieve this goal. Thus, in different countries, the provision of PGD and regulatory frameworks reflect the perceptions of scientific groups, legislators, and society regarding this technology. In Brazil, several texts have been analyzed by the National Congress to regulate the use of assisted reproduction technologies. Legislative debates, however, are not conclusive, and limited information has been published on how PGD is specifically regulated. The country requires the development of new regulatory standards to ensure adequate access to this technology and to guarantee its safe practice. This study examined official documents published on PGD regulation in Brazil and demonstrated how little direct oversight of PGD currently exists. It provides relevant information to encourage reflection on a particular regulation model in a Brazilian context, and should serve as part of the basis to enable further reform of the clinical practice of PGD in the country.