993 resultados para iterative methods
Resumo:
Objectives : This study compares three methods to forecast the number of acute somatic hospital beds needed in a Swiss academic hospital over the period 2010-2030. Design : Information about inpatient stays is provided through a yearly mandatory reporting of Swiss hospitals, containing anonymized data. Forecast of the numbers of beds needed compares a basic scenario relying on population projections with two other methods in use in our country that integrate additional hypotheses on future trends in admission rates and length of stay (LOS).
Resumo:
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.
Resumo:
ABSTRACT Functional genomic analyses require intact RNA; however, Passiflora edulis leaves are rich in secondary metabolites that interfere with RNA extraction primarily by promoting oxidative processes and by precipitating with nucleic acids. This study aimed to analyse three RNA extraction methods, Concert™ Plant RNA Reagent (Invitrogen, Carlsbad, CA, USA), TRIzol® Reagent (Invitrogen) and TRIzol® Reagent (Invitrogen)/ice -commercial products specifically designed to extract RNA, and to determine which method is the most effective for extracting RNA from the leaves of passion fruit plants. In contrast to the RNA extracted using the other 2 methods, the RNA extracted using TRIzol® Reagent (Invitrogen) did not have acceptable A260/A280 and A260/A230 ratios and did not have ideal concentrations. Agarose gel electrophoresis showed a strong DNA band for all of the Concert™ method extractions but not for the TRIzol® and TRIzol®/ice methods. The TRIzol® method resulted in smears during electrophoresis. Due to its low levels of DNA contamination, ideal A260/A280 and A260/A230 ratios and superior sample integrity, RNA from the TRIzol®/ice method was used for reverse transcription-polymerase chain reaction (RT-PCR), and the resulting amplicons were highly similar. We conclude that TRIzol®/ice is the preferred method for RNA extraction for P. edulis leaves.
Resumo:
Phlorotannins are the least studied group of tannins and are found only in brown algae. Hitherto the roles of phlorotannins, e.g. in plant-herbivore interactions, have been studied by quantifying the total contents of the soluble phlorotannins with a variety of methods. Little attention has been given to either quantitative variation in cell-wall-bound and exuded phlorotannins or to qualitative variation in individual compounds. A quantification procedure was developed to measure the amount of cell-wall-bound phlorotannins. The quantification of soluble phlorotannins was adjusted for both large- and small-scale samples and used to estimate the amounts of exuded phlorotannins using bladder wrack (Fucus vesiculosus) as a model species. In addition, separation of individual soluble phlorotannins to produce a phlorotannin profile from the phenolic crude extract was achieved by high-performance liquid chromatography (HPLC). Along with these methodological studies, attention was focused on the factors in the procedure which generated variation in the yield of phlorotannins. The objective was to enhance the efficiency of the sample preparation procedure. To resolve the problem of rapid oxidation of phlorotannins in HPLC analyses, ascorbic acid was added to the extractant. The widely used colourimetric method was found to produce a variation in the yield that was dependent upon the pH and concentration of the sample. Using these developed, adjusted and modified methods, the phenotypic plasticity of phlorotannins was studied with respect to nutrient availability and herbivory. An increase in nutrients decreased the total amount of soluble phlorotannins but did not affect the cell-wall-bound phlorotannins, the exudation of phlorotannins or the phlorotannin profile achieved with HPLC. The presence of the snail Thedoxus fluviatilis on the thallus induced production of soluble phlorotannins, and grazing by the herbivorous isopod Idotea baltica increased the exudation of phlorotannins. To study whether the among-population variations in phlorotannin contents arise from the genetic divergence or from the plastic response of algae, or both, algae from separate populations were reared in a common garden. Genetic variation among local populations was found in both the phlorotannin profile and the content of total phlorotannins. Phlorotannins were also genetically variable within populations. This suggests that local algal populations have diverged in their contents of phlorotannins, and that they may respond to natural selection and evolve both quantitatively and qualitatively.
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
Le nombre d'examens tomodensitométriques (Computed Tomography, CT) effectués chaque année étant en constante augmentation, différentes techniques d'optimisation, dont les algorithmes de reconstruction itérative permettant de réduire le bruit tout en maintenant la résolution spatiale, ont étés développées afin de réduire les doses délivrées. Le but de cette étude était d'évaluer l'impact des algorithmes de reconstruction itérative sur la qualité image à des doses effectives inférieures à 0.3 mSv, comparables à celle d'une radiographie thoracique. Vingt CT thoraciques effectués à cette dose effective ont été reconstruits en variant trois paramètres: l'algorithme de reconstruction, rétroprojection filtrée versus reconstruction itérative iDose4; la matrice, 5122 versus 7682; et le filtre de résolution en densité (mou) versus spatiale (dur). Ainsi, 8 séries ont été reconstruites pour chacun des 20 CT thoraciques. La qualité d'image de ces 8 séries a d'abord été évaluée qualitativement par deux radiologues expérimentés en aveugle en se basant sur la netteté des parois bronchiques et de l'interface entre le parenchyme pulmonaire et les vaisseaux, puis quantitativement en utilisant une formule de merit, fréquemment utilisée dans le développement de nouveaux algorithmes et filtres de reconstruction. La performance diagnostique de la meilleure série acquise à une dose effective inférieure à 0.3 mSv a été comparée à celle d'un CT de référence effectué à doses standards en relevant les anomalies du parenchyme pulmonaire. Les résultats montrent que la meilleure qualité d'image, tant qualitativement que quantitativement a été obtenue en utilisant iDose4, la matrice 5122 et le filtre mou, avec une concordance parfaite entre les classements quantitatif et qualitatif des 8 séries. D'autre part, la détection des nodules pulmonaires de plus de 4mm étaient similaire sur la meilleure série acquise à une dose effective inférieure à 0.3 mSv et le CT de référence. En conclusion, les CT thoraciques effectués à une dose effective inférieure à 0.3 mSv reconstruits avec iDose4, la matrice 5122 et le filtre mou peuvent être utilisés avec confiance pour diagnostiquer les nodules pulmonaires de plus de 4mm.
Resumo:
Background: Information about the composition of regulatory regions is of great value for designing experiments to functionally characterize gene expression. The multiplicity of available applications to predict transcription factor binding sites in a particular locus contrasts with the substantial computational expertise that is demanded to manipulate them, which may constitute a potential barrier for the experimental community. Results: CBS (Conserved regulatory Binding Sites, http://compfly.bio.ub.es/CBS) is a public platform of evolutionarily conserved binding sites and enhancers predicted in multiple Drosophila genomes that is furnished with published chromatin signatures associated to transcriptionally active regions and other experimental sources of information. The rapid access to this novel body of knowledge through a user-friendly web interface enables non-expert users to identify the binding sequences available for any particular gene, transcription factor, or genome region. Conclusions: The CBS platform is a powerful resource that provides tools for data mining individual sequences and groups of co-expressed genes with epigenomics information to conduct regulatory screenings in Drosophila.
Resumo:
Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.
Resumo:
Drying is a major step in the manufacturing process in pharmaceutical industries, and the selection of dryer and operating conditions are sometimes a bottleneck. In spite of difficulties, the bottlenecks are taken care of with utmost care due to good manufacturing practices (GMP) and industries' image in the global market. The purpose of this work is to research the use of existing knowledge for the selection of dryer and its operating conditions for drying of pharmaceutical materials with the help of methods like case-based reasoning and decision trees to reduce time and expenditure for research. The work consisted of two major parts as follows: Literature survey on the theories of spray dying, case-based reasoning and decision trees; working part includes data acquisition and testing of the models based on existing and upgraded data. Testing resulted in a combination of two models, case-based reasoning and decision trees, leading to more specific results when compared to conventional methods.