978 resultados para Tooth enamel
Resumo:
This paper deals with the analysis of the parameters which are effective in shaft voltage generation of induction generators. It focuses on different parasitic capacitive couplings by mathematical equations, finite element simulations and experiments. The effects of different design parameters have been studied on proposed capacitances and resultant shaft voltage. Some parameters can change proposed capacitive coupling such as: stator slot tooth, the gap between slot tooth and winding, and the height of the slot tooth, as well as the air gap between the rotor and the stator. This analysis can be used in a primary stage of a generator design to reduce motor shaft voltage and avoid additional costs of resultant bearing current mitigation.
Resumo:
In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.
Resumo:
To date, attempts to regenerate a complete tooth, including the critical periodontal tissues associated with the tooth root, have not been successful. Controversy still exists regarding the origin of the cell source for cellular cementum (epithelial or mesenchymal). This disagreement may be partially due to a lack of understanding of the events leading to the initiation and development of the tooth roots and supportive tissues, such as the cementum. Osterix (OSX) is a transcriptional factor essential for osteogenesis, but its role in cementogenesis has not been addressed. In the present study, we first documented a close relationship between the temporal- and spatial-expression pattern of OSX and the formation of cellular cementum. We then generated 3.6 Col 1-OSX transgenic mice, which displayed accelerated cementum formation vs. WT controls. Importantly, the conditional deletion of OSX in the mesenchymal cells with two different Cre systems (the 2.3 kb Col 1 and an inducible CAG-CreER) led to a sharp reduction in cellular cementum formation (including the cementum mass and mineral deposition rate) and gene expression of dentin matrix protein 1 (DMP1) by cementocytes. However, the deletion of the OSX gene after cellular cementum formed did not alter the properties of the mature cementum as evaluated by backscattered SEM and resin-cast SEM. Transient transfection of Osx in the cementoblasts in vitro significantly inhibited cell proliferation and increased cell differentiation and mineralization. Taken together, these data support 1) the mesenchymal origin of cellular cementum (from PDL progenitor cells); 2) the vital role of OSX in controlling the formation of cellular cementum; and 3) the limited remodeling of cellular cementum in adult mice.
Resumo:
We have always felt that “something very special” was happening in the 48hr and other similar game jams. This “something” is more than the intensity and challenge of the experience, although this certainly has appeal for the participants. We had an intuition that these intense 48 hour game jams exposed something pertinent to the changing shape of the Australian games industry where we see the demise of the late 20th century large studio - the “Night Elf” model and the growth of the small independent model. There are a large number of wider economic and cultural factors around this evolution but our interest is specifically in the change from “industry” to “creative industry” and the growth of games as a cultural media and art practice. If we are correct in our intuition, then illuminating this something also has important ramifications for those courses which teach game and interaction design and development. Rather than undertake a formal ethno-methodological approach, we decided to track as many of the actors in the event as possible. We documented the experience (Keith Novak’s beautiful B&W photography), the individual and their technology (IOGraph mouse tracking), the teams as a group (Time lapse photography) and movement tracking throughout the whole space (Blue tooth phone tracking). The raw data collected has given us opportunity to start a commentary on the “something special” happening in the 48hr.
Resumo:
In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.
Resumo:
A comparison was made of accelerated professional development (APD) for nurses (n=64), involving peer consultation and reflective practice, and peer consultation alone (n=30). Although APD participants had a higher completion rate, improvements in caregiver behaviors and work environment were not significantly different.
Resumo:
Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.
Resumo:
Objective: Theaflavin (TF) from the black tea can react to human salivary proline-rich proteins (PRPs) to form stains on exposed dental surfaces. Here, we employed a model of protein/pigment film using TF and dephosphorylated bovine b-casein (Db-CN), which has an extended conformation, similar to that of salivary PRPs, on a sensor surface to assess the efficacy of cysteine proteases (CPs) including papain, stem bromelain, and ficin, on removing TF bound to Db-CN and the control TF readsorption on the residual substrate surfaces was also measured. Methods: The protein/pigment complex film was built by using a quartz crystal microbalance with dissipation (QCM-D). The efficacies of CPs were assessed by Boltzman equation model. The surface details were detected by grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles. Results: The efficacy order of CPs on hydrolyzing protein/pigment complex film is ficin > papain > bromelain. The results from grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles demonstrated that TF bound on the Db- CN was effectively removed by the CPs, and the amount of TF readsorption on both the residual film of the Db-CN/TF and the Db-CN was markedly decreased after hydrolysis. Conclusion: This study indicates the potential application of the CPs for tooth stain removal and suggests that these enzymes are worthy of further investigation for use in oral healthcare.
Resumo:
PURPOSE: The purpose of this study was to compare twice daily tooth-brushing using 0.304 percent fluoride toothpaste alone with: (1) twice daily tooth-brushing plus once daily 10% casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste; and (2) twice daily tooth-brushing plus once daily 0.12% chlorhexidine gel (CHX) for reducing early childhood caries (ECC) and mutans streptococci (MS) colonization. METHODS: Subjects (n=622) recruited at birth were randomized to receive either CPP-ACP or CHX or no product (study control [SC]). All children were examined at 6, 12, and 18 months old in their homes, and at 24 months old in a community dental clinic. RESULTS: At 24 months old, the caries incidence was 1% (2/163) in CPP-ACP, 2% (4/180) in CHX, and 2% (3/188) in SC groups. In children who were previously MS colonized at 12 and 18 months old, 0% (0/11) and 5% (3/63), respectively, of the CPP-ACP group remained MS-positive versus 22% (2/9) and 72% (18/25) in CHX and 16% (4/25) and 50% (7/14) in SC groups (P<.001). CONCLUSIONS: There is insufficient evidence to justify the daily use of casein phosphopeptide-amorphous calcium phosphate or chlorhexidine gel to control early childhood caries.
Resumo:
We provide a taxonomic redescription of the dasyurid marsupial Atherton Antechinus, Antechinus godmani (Thomas). A. godmani is only rarely encountered and limited to wet tropical rainforests of north-east Queensland, Australia, between the towns of Cardwell and Cairns (a distribution spanning 135 kilometres from north to south). The distinctive species occurs at altitudes of over 600 meters asl, in all major rainforest types, and can be found with both the northern subspecies of the Yellow-footed Antechinus, A. flavipes rubeculus Van Dyck and the Rusty Antechinus, A. adustus (Thomas). A. god-mani is clearly separated from all congeners on the basis of both morphometrics and genetics. A. godmani can be distin-guished from all extant congeners based on external morphology by a combination of large size, naked-looking tail and reddish fur on the face and head. A. godmani skulls are characteristically large, with a suite of long features: basicranium, palate, upper premolar tooth row, inter-palatal vacuity distance and dentary. Phylogenies generated from mt- and nDNA data position Antechinus godmani as monophyletic with respect to other members of the genus; A. godmani is strongly supported as the sister-group to a clade containing all other antechinus, but excluding the south-east Australian Dusky An-techinus, A. swainsonii (Waterhouse) and Swamp Antechinus, A. minimus (Geoffroy). Antechinus godmani are genetically very divergent compared to all congeners (mtDNA: range 12.9–16.3%).
Resumo:
Purpose The purpose of this study was to investigate the effectiveness of a 10 percent casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) cream to reduce mutans streptococci (MS) colonization and prevent early childhood caries. Methods The cohort was randomized at mean age of 11 days old to receive once-daily CPP-ACP cream (n=102) or no product (comparison group; n=89) from the time of first tooth eruption. All mothers were contacted by telephone at six, 12, and 18 months and advised to brush their children's teeth twice daily with low-dose fluoride toothpaste. At 24 months, all children were examined at a community clinic. Results At 24 months old, one out of 65 (2 percent) children in the CPP-ACP group had caries vs. four out of 58 (seven percent) in the comparison group (difference not statistically significant). There were fewer MS-positive children in the CPP-ACP group (26 percent) vs. the comparison group (47 percent; P=.02). A dose-response effect of CPP-ACP usage on MS was observed, where MS was present in eight percent of regular CPP-ACP users, 28 percent of irregular users, and 47 percent of non-users (P<.02). Conclusions CPP-ACP reduced the percentages of mutans streptococci-positive 24-month-old children, although it did not reduce caries prevalence.
Resumo:
Periodontal disease is characterized by the destruction of the tissues that attach the tooth to the alveolar bone. Various methods for regenerative periodontal therapy including the use of barrier membranes, bone replacement grafts, and growth factor delivery have been investigated; however, true regeneration of periodontal tissue is still a significant challenge to scientists and clinicians. The focus on periodontal tissue engineering has shifted from attempting to recreate tissue replacements/constructs to the development of biomaterials that incorporate and release regulatory signals to achieve in situ periodontal regeneration. The release of ions and molecular cues from biomaterials may help to unlock latent regenerative potential in the body by regulating cell proliferation and differentiation towards different lineages (e.g. osteoblasts and cementoblasts). Silicate-based bioactive materials, including bioactive silicate glasses and ceramics, have become the materials of choice for periodontal regeneration, due to their favourable osteoconductivity and bioactivity. This article will focus on the most recent advances in the in vitro and in vivo biological application of silicate-based ceramics, specifically as it relates to periodontal tissue engineering.