984 resultados para Resistance parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from 10 minidrum centrifuge tests conducted at the Schofield Centre, compiled with 4 additional test results from Thusyanthan et al., 2008. All these tests were designed to measure the uplift resistance of a pipeline installed into stiff clay by trenching and backfilling, then uplifted approximately 3 months after installation. All tests were conducted at 1:30 scale using soil obtained from offshore clay samples. Experimental results show that clay blocks remained intact after 3 prototype months of consolidation, and were lifted rather than sheared during pipe pullout. The uplift resistance therefore depends on the weight of the soil cover and the shearing resistance mobilised at the softening contact points between the intact blocks and within the interstitial slurry. Slow drained pullout led to lower resistance than fast pullout, indicating that the drained response is critical for design. The varying scatter shows that peak uplift resistance is very sensitive to the arrangement of the backfill blocks when the cover and pipe diameter are comparable to the block size. Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of densification to improve the performance of shallow foundations during the centrifuge modeling of earthquake-induced liquefaction on level sand deposits is discussed. The densification of liquefiable ground provided protection against or significantly reduces liquefaction-related damage. Propagation of accelerations in the deposit exhibited considerable distinct features according to the relative density of the sand in the model. It was found that during the first couple of cycles, the dense soil amplifies the fundamental frequency component of the earthquake and preserves the higher frequency components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details a bulk acoustic mode resonator fabricated in single-crystal silicon with a quality factor of 15 000 in air, and over a million below 10 mTorr at a resonant frequency of 2.18 MHz. The resonator is a square plate that is excited in the square-extensional mode and has been fabricated in a commercial foundry silicon-on-insulator (SOI) MEMS process through MEMSCAP. This paper also presents a simple method of extracting resonator parameters from raw measurements heavily buried in electrical feedthrough. Its accuracy has been demonstrated through a comparison between extracted motional resistance values measured at different voltage biases and those predicted from an analytical model. Finally, a method of substantially cancelling electrical feedthrough through system-level electronic implementation is also introduced. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for the fast and direct extraction of model parameters for capacitive MEMS resonators from their measured transmission response such as quality factor, resonant frequency, and motional resistance. We show that these parameters may be extracted without having to first de-embed the resonator motional current from the feedthrough. The series and parallel resonances from the measured electrical transmission are used to determine the MEMS resonator circuit parameters. The theoretical basis for the method is elucidated by using both the Nyquist and susceptance frequency response plots, and applicable in the limit where CF > CmQ; commonly the case when characterizing MEMS resonators at RF. The method is then applied to the measured electrical transmission for capacitively transduced MEMS resonators, and compared against parameters obtained using a Lorentzian fit to the measured response. Close agreement between the two methods is reported herein. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casimir effect on the critical pull-in gap and pull-in voltage of nanoelectromechanical switches is studied. An approximate analytical expression of the critical pull-in gap with Casimir force is presented by the perturbation theory. The corresponding pull-in parameters are computed numerically, from which one can notice the nonlinear effect of Casimir force on the pull-in parameters. The detachment length has been presented, which increases with increasing thickness of the beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the dependence of thermodynamic variables in a sonoluminescing ~SL! bubble on various physical factors, which include viscosity, thermal conductivity, surface tension, the equation of state of the gas inside the bubble, as well as the compressibility of the surrounding liquid. The numerical solutions show that the existence of shock waves in the SL parameter regime is very sensitive to these factors. Furthermore, we show that even without shock waves, the reflection of continuous compressional waves at the bubble center can produce the high temperature and picosecond time scale light pulse of the SL bubble, which implies that SL may not necessarily be due to shock waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements and simulations of the interfacial mechanical parameters for the Al/Epoxy/Al2O3 system are performed in the present investigation. A series of Al film thicknesses between 20 and 250 microns and three peel angles of 90, 135 and 180 degrees are considered. Two types of epoxy adhesives are adopted to obtain both strong and weak interface adhesions. A finite element model with cohesive zone elements is used to identify the interfacial parameters and simulate the peel test process. By simulating and recording normal stress near the crack tip, the separation strength is obtained. Furthermore, the cohesive energy is identified by comparing the simulated steady-state peel force and the experimental result. It is found from the research that both the cohesive energy and the separation strength can be taken as the intrinsic interfacial parameters which are dependent on the thickness of the adhesive layer and independent of the film thickness and peel angle.