980 resultados para Names, Low German.
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Resumo:
This paper presents a simple and low cost fabrication approach using extended printed circuit board processing techniques for an electrostatically actuated phase shifter on a common microwave laminate. This approach uses 15 mu m thin copper foils for realizing the bridge structures as well as for a spacer. A polymeric thin film deposited by spin coating and patterned using lithographic process is used as a dielectric layer to improve the reliability of the device. The prototype of the phase shifter for X-band operation is fabricated and tested for electrical and electromechanical performance parameters. The realized devices have a figure of merit of 70 degrees/dB for a maximum applied bias potential of 85 V. Since these phase shifters can be conveniently fabricated directly on microwave substrates used for feed distribution networks of phased arrays, the overall addition in cost, dimensions and processing for including these phase shifters in these arrays is minimal.
Resumo:
This paper reports the design of a compact low pass filter (LPF) with wide stop band region using trisection stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm x 20 mm x 0.78 mm which is 0.1 lambda x 0.066 lambda. x 0.0026 lambda at 1 GHz. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.
Resumo:
In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov random field (MRF)-based graphical model with pairwise interaction, in conjunction with message damping, and 2) use of factor graph (FG)-based graphical model with Gaussian approximation of interference (GAI). The per-symbol complexities are O(K(2)n(t)(2)) and O(Kn(t)) for the MRF and the FG with GAI approaches, respectively, where K and n(t) denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large Kn(t). From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing Kn(t). Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of M-QAM symbol detection.
Resumo:
It is possible to prepare low‐voltage varistors from the zinc antimony spinel Zn7Sb2O12 with breakdown voltages in the range of 3–20 V and nonlinearity coefficient α=7–15. The varistor property is due to the formation of high ohmic potential barriers at the grain boundary regions on low‐ohmic n‐type grain interiors of the polycrystalline samples. The method of preparation of the spinel, synthesized by coprecipitation followed by annealing under restricted partial pressures of oxygen, controls the mixed valence states for antimony, namely, Sb3+ and Sb5+. This is critical in attaining high nonlinearity and lower breakdown voltages.
Resumo:
A method of precise measurement of on-chip analog voltages in a mostly-digital manner, with minimal overhead, is presented. A pair of clock signals is routed to the node of an analog voltage. This analog voltage controls the delay between this pair of clock signals, which is then measured in an all-digital manner using the technique of sub-sampling. This sub-sampling technique, having measurement time and accuracy trade-off, is well suited for low bandwidth signals. This concept is validated by designing delay cells, using current starved inverters in UMC 130nm CMOS process. Sub-mV accuracy is demonstrated for a measurement time of few seconds.
Resumo:
In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.
Resumo:
A highly transparent all ZnO thin film transistor (ZnO-TFT) with a transmittance of above 80% in the visible part of the spectrum, was fabricated by direct current magnetron sputtering, with a bottom gate configuration. The ZnO-TFT with undoped ZnO channel layers deposited on 300 nm Zn0.7Mg0.3O gate dielectric layers attains an on/off ratio of 104 and mobility of 20 cm2/V s. The capacitance-voltage (C−V) characteristics of the ZnO-TFT exhibited a transition from depletion to accumulation with a small hysteresis indicating the presence of oxide traps. The trap density was also computed from the Levinson’s plot. The use of Zn0.7Mg0.3O as a dielectric layer adds additional dimension to its applications. The room temperature processing of the device depicts the possibility of the use of flexible substrates such as polymer substrates. The results provide the realization of transparent electronics for next-generation optoelectronics.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO–3TiO2–B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz–1 MHz frequency range were measured as a function of temperature (323–748 K). The dielectric constant and loss were found to be frequency independent in the 323–473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga’s formula and found to be 16 ppm K−1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17±0.5 and 0.005±0.001, respectively at 323 K in the 1 kHz–1 MHz frequency range which may be of considerable interest to capacitor industry.
Resumo:
Structural and electrical properties of Eu2O3 films grown on Si(100) in 500–600 °C temperature range by low pressure metalorganic chemical vapor deposition are reported. As-grown films also possess the impurity Eu1−xO phase, which has been removed upon annealing in O2 ambient. Film’s morphology comprises uniform spherical mounds (40–60 nm). Electrical properties of the films, as examined by capacitance-voltage measurements, exhibit fixed oxide charges in the range of −1.5×1011 to −6.0×1010 cm−2 and dielectric constant in the range of 8–23. Annealing has resulted in drastic improvement of their electrical properties. Effect of oxygen nonstoichiometry on the film’s property is briefly discussed.
Resumo:
The numerical solutions of Boltzmann transpott equation for the energy distribution of electrons moving in crossed fields in nitrogen have been obtained for 100 ÿ E/p ÿ 1000 V M-1 Torr-1 and for 0ÿ B/p ÿ 0.02 Tesla Torr-1 using the concept of energy dependent effective field intensity. From the derived distribution functions the electron mean energy, the tranaverse and perpendicular drift velocities and the averaged effective field intensity (Eavef) which signifies the average field intensity experienced by electron swarms in E àB field have been derived. The maximum difference between the electron mean energy for a given E ÃÂB field and that corresponding to Eavef/p (p is the gas pressure) is found to be within ñ3.5%.
Resumo:
The firing characteristics of the simple triggered vacuum gap (TVG) using lead zirconate titanate as dielectric material in the triggered gap are described. This TVG has a long life of about 2000 firings without appreciable deterioration of the electrical properties for main discharge currents upto 3 kA and is much superior to these made with Supramica (Mycalex Corporation of America) and silicon carbide as used in our earlier investigations. The effects of the variation of trigger voltage, trigger curcit, trigger pulse duration, trigger pulse energy, main gap voltage, main gap separation and main circuit energy on the firing characteristics have been studied. Trigger resistance progressively decreases with the number of firings of the trigger gap and as well as of the main gap. This decrease in the trigger resistance is more pronounced for main discharge currents exceeding 10 kA. The minimum trigger current required for reliable firing decreases with increase of trigger voltage upto a threshold value of 1.2 kV and there-onwards saturates at 3.0 A. This value is less than that obtained with Supramica as dielectric material. One hundred percent firing probability of the TVG at main gap voltages as low as 50 V is possible and this low voltage breakdown of the main gap appears to be similar to the breakdown at low pressures between moving plasma by other workers. and the cold electrodes immersed in it, as reported.
Resumo:
This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.
Resumo:
As aircraft technology is moving towards more electric architecture, use of electric motors in aircraft is increasing. Axial flux BLDC motors (brushless DC motors) are becoming popular in aero application because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. Axial flux BLDC motors, in general, and ironless axial flux BLDC motors, in particular, come with very low inductance Owing to this, they need special care to limit the magnitude of ripple current in motor winding. In most of the new more electric aircraft applications, BLDC motor needs to be driven from 300 or 600 Vdc bus. In such cases, particularly for operation from 600 Vdc bus, insulated-gate bipolar transistor (IGBT)-based inverters are used for BLDC motor drive. IGBT-based inverters have limitation on increasing the switching frequency, and hence they are not very suitable for driving BLDC motors with low winding inductance. In this study, a three-level neutral point clamped (NPC) inverter is proposed to drive axial flux BLDC motors. Operation of a BLDC motor driven from three-level NPC inverter is explained and experimental results are presented.