1000 resultados para Matemáticas-problemas, ejercicios, etc.
Resumo:
El estudio tuvo como propósito determinar la efectividad relativa del ABP, comparado con el método tradicional para desarrollar habilidades de resolución de problemas en el aprendizaje de las aplicaciones de la solución de triángulos en el grado 10º de la Institución Educativa El Progreso, de El Carmen de Viboral, Antioquia. La enseñanza-aprendizaje de las matemáticas sustentadas con la estrategia didáctica Aprendizaje Basado en Problemas permite a los estudiantes y docentes aproximarse al conocimiento de una manera similar a como lo hacen los científicos; el primer paso es una situación de duda, perplejidad del estudiante provocada por la Situación Problema planteada por el docente, el segundo un momento de “sugerencias” en las que la mente salta hacia adelante en busca de una posible solución (Dewey, 1933, p. 102). El tercer paso “intelectualización” de la dificultad que se ha percibido para convertirlo en un problema que debe solucionarse (Dewey, 1933, p. 103). La cuarta es “la idea conductora o hipótesis”, las cuales se basan en la formulación de explicaciones sugeridas o soluciones posibles (Dewey, 1933, p. 104). El quinto paso sería el “razonamiento”, consiste en la elaboración racional de una idea que se va desarrollando de acuerdo a las habilidades de cada persona (Dewey, 1933, p. 105). El paso final es la “comprobación de hipótesis” en situaciones reales. Este proceso se evidenció a través de cuatro Situaciones-Problema enfocadas desde un contexto auténtico “la remodelación del parque principal de El Carmen de Viboral” con el objetivo de motivar a los estudiantes para el aprendizaje de algunos conceptos matemáticos y el desarrollo de habilidades de resolución de problemas. La metodología de la investigación fue un diseño cuasi-experimental con grupo experimental compuesto por 38 estudiantes del grado 10º2 y grupo control con 37 estudiantes del grado 10º1. Se empleó como técnica de recolección de la información una prueba pre-test antes del tratamiento y una prueba post-test que se aplicó después del tratamiento a ambos grupos; se aplicó también una escala de satisfacción de los estudiantes con la metodología tradicional en ambos grupos y una escala de satisfacción con la estrategia didáctica ABP sólo al grupo experimental; la observación directa, y el portafolio que evidenciaba todas las construcciones de los estudiantes. La aplicación de la estrategia didáctica experimental se aplicó durante 4 meses, con una intensidad horaria de cuatro horas semanales, tiempo durante el cual se implementaron las cuatro Situaciones-Problema. Se concluyó entre otros aspectos que el 86,5% de los estudiantes encuentran las clases de matemáticas como interesantes, contextualizadas, aplicables y significativas, mientras que antes del tratamiento sólo el 44,4% se encontraba satisfecho con las clases de matemáticas, con una diferencia en cambio de actitud de 42,1% frente a las clases de matemáticas con la metodología tradicional. En el análisis comparativo de adquisición de competencias específicas se demuestra que el grupo experimental demostró ser matemáticamente más competente con respecto al grupo control en todas las competencias evaluadas: capacidad de modelación, inductiva, comunicativa y habilidad procedimental. Además, el proyecto de investigación tuvo un valor agregado: 10 estudiantes tuvieron la oportunidad de conocer más sobre su cultura ceramista mediante el diseño y construcción de mosaicos que los ofreció la casa de la cultura en forma gratuita.
Resumo:
Se presentan los resultados del experimento sobre el uso de mapas conceptuales en el contexto del aprendizaje basado en problemas (ABP). El experimento fue realizado en la Universidad Javeriana (Bogotá, Colombia) en el pregrado de administración. Se encontró que el mapa conceptual mejora el aprendizaje pero no afecta la percepción de los alumnos del método de ABP. Se recomienda incluir mapas conceptuales en los ejercicios de ABP
Resumo:
Este estudo tem como objectivo investigar o papel que as representações, construídas por alunos do 1.o ano de escolaridade, desempenham na resolução de problemas de Matemática. Mais concretamente, a presente investigação procura responder às seguintes questões: Que representações preferenciais utilizam os alunos para resolver problemas? De que forma é que as diferentes representações são influenciadas pelas estratégias de resolução de problemas utilizadas pelos alunos? Que papéis têm os diferentes tipos de representação na resolução dos problemas? Nesta investigação assume-se que a resolução de problemas constitui uma actividade muito importante na aprendizagem da Matemática no 1.o Ciclo do Ensino Básico. Os problemas devem ser variados, apelar a estratégias diversificadas de resolução e permitir diferentes representações por parte dos alunos. As representações cativas, icónicas e simbólicas constituem importantes ferramentas para os alunos organizarem, registarem e comunicarem as suas ideias matemáticas, nomeadamente no âmbito da resolução de problemas, servindo igualmente de apoio à compreensão de conceitos e relações matemáticas. A metodologia de investigação segue uma abordagem interpretativa tomando por design o estudo de caso. Trata-se simultaneamente de uma investigação sobre a própria prática, correspondendo os quatro estudos de caso a quatro alunos da turma de 1.0 ano de escolaridade da investigadora. A recolha de dados teve lugar durante o ano lectivo 2007/2008 e recorreu à observação, à análise de documentos, a diários, a registos áudio/vídeo e ainda a conversas com os alunos. A análise de dados que, numa primeira fase, acompanhou a recolha de dados, teve como base o problema e as questões da investigação bem como o referencial teórico que serviu de suporte à investigação. Com base no referencial teórico e durante o início do processo de análise, foram definidas as categorias de análise principais, sujeitas posteriormente a um processo de adequação e refinamento no decorrer da análise e tratamento dos dados recolhidos -com vista à construção dos casos em estudo. Os resultados desta investigação apontam as representações do tipo icónico e as do tipo simbólico como as representações preferenciais dos alunos, embora sejam utilizadas de formas diferentes, com funções distintas e em contextos diversos. Os elementos simbólicos apoiam-se frequentemente em elementos icónicos, sendo estes últimos que ajudam os alunos a descompactar o problema e a interpretá-lo. Nas representações icónicas enfatiza-se o papel do diagrama, o qual constitui uma preciosa ferramenta de apoio ao raciocínio matemático. Conclui-se ainda que enquanto as representações activas dão mais apoio a estratégias de resolução que envolvem simulação, as representações icónicas e simbólicas são utilizadas com estratégias diversificadas. As representações construídas, com papéis e funções diferentes entre si, e que desempenham um papel crucial na correcta interpretação e resolução dos problemas, parecem estar directamente relacionadas com as caraterísticas da tarefa proposta no que diz respeito às estruturas matemáticas envolvidas. ABSTRACT; The objective of the present study is to investigate the role of the representations constructed by 1st grade students in mathematical problem solving. More specifically, this research is oriented by the following questions: Which representations are preferably used by students to solve problems? ln which way the strategies adopted by the students in problem solving influence those distinct representations? What is the role of the distinct types of representation in the problems solving process? ln this research it is assumed that the resolution of problems is a very important activity in the Mathematics learning at the first cycle of basic education. The problems must be varied, appealing to diverse strategies of resolution and allow students to construct distinct representations. The active, iconic and symbolic representations are important tools for students to organize, to record and to communicate their mathematical ideas, particularly in problem solving context, as well as supporting the understanding of mathematical concepts and relationships. The adopted research methodology follows an interpretative approach, and was developed in the context of the researcher classroom, originating four case studies corresponding to four 1 st grade students of the researcher's class. Data collection was carried out during the academic year of 2007/2008 and was based on observation, analysis of documents, diaries, audio and video records and informal conversations with students. The initial data analysis was based on the problems and issues of research, as well in the theoretical framework that supports it. The main categories of analysis were defined based on the theoretical framework, and were subjected to a process of adaptation and refining during data processing and analysis aiming the -case studies construction. The results show that student's preferential representations are the iconic and the symbolic, although these types of representations are used in different ways, with different functions and in different contexts. The symbolic elements are often supported by iconic elements, the latter helping students to unpack the problem and interpret it. ln the iconic representations the role of the diagrams is emphasized, consisting in a valuable tool to support the mathematical reasoning. One can also conclude that while the active representations give more support to the resolution strategies involving simulation, the iconic and symbolic representations are preferably used with different strategies. The representations constructed with distinct roles and functions, are crucial in the proper interpretation and resolution of problems, and seem to be directly related to the characteristics of the proposed task with regard to the mathematical structures involved.
Resumo:
Las estrategias metodológicas utilizadas en este trabajo tratan de mejorar el rendimiento y conocimiento del bloque curricular Álgebra y Geometría en los estudiantes del primero de bachillerato del Colegio Nacional Mixto “San Joaquín”. Las estrategias metodológicas planificadas para el bloque curricular Álgebra y Geometría fueron aplicadas en su totalidad, pero hubieron inconvenientes que se fueron solucionando en el proceso de la enseñanza – aprendizaje del bloque como: la utilización del laboratorio de computación, las diferentes actividades extra curriculares y las políticas de la institución. Las actividades lúdicas elaboradas en este bloque curricular,son las que más disfrutaron los estudiantes, por ser diferentes a las actividades tradicionales que se realiza en la enseñanza de la Matemática, otra actividad que causo novedad, es la aplicación de las TIC, como es el caso de la utilización del software GeoGebra y Modellus que permiten resolver ejercicios y problemas mediante gráficas y animaciones, otra herramienta de aprendizaje didáctico es la aplicación del internet como medio de consulta para reforzar significativamente los conocimientos. Los resultados de las evaluaciones aplicadas a los estudiantes de los primeros de bachillerato de esta institución, demuestran que las estrategias metodológicas utilizadas, lograron mejorar el rendimiento y conocimientos del bloque Álgebra y Geometría.
Resumo:
Académico - Licenciaturas
Resumo:
O presente relatório insere-se no âmbito das unidades curriculares de Prática de Ensino Supervisionada em Pré-Escolar e em 1º Ciclo do Ensino Básico, inseridas no Mestrado em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico da Universidade de Évora. A investigação traduzida neste relatório decorreu nos dois contextos acima referidos, sendo primeiramente realizada no contexto de Educação Pré-Escolar e seguidamente no contexto de 1º Ciclo do Ensino Básico. O principal objetivo da investigação centra-se no desenvolvimento das capacidades de resolver problemas em matemática, tanto em crianças mais pequenas, como mais tarde no início da escolaridade obrigatória. Surgiu assim a questão orientadora da investigação: Que práticas devo realizar para contribuir para que as/os crianças/alunos consigam tornar-se bons resolvedores de problemas? Seguiram-se a esta outras três questões no sentido auxiliar a investigação: Como lidam as/os crianças/alunos com a resolução de problemas? Que estratégias utilizam as/os crianças/alunos para resolver problemas? Que representações usam as/os crianças/alunos na resolução de problemas? No desenvolvimento da investigação foi realizada uma sequência didática de tarefas matemáticas de exploração de resolução de problemas onde foram recolhidos os dados para uma posterior análise, tendo em conta não só os objetivos da investigação como os referenciais teóricos. Concluiu-se que a metodologia utilizada desenvolveu a capacidade de resolver problemas dos estudantes, ou seja, a exploração de problemas utilizando diferentes estratégias e representações, tal como a partilha de conhecimentos e a comunicação matemática, são ferramentas essenciais para uma intervenção eficaz no que concerne à resolução de problemas; Supervised Teaching Practice in Preschool Education and Teaching of the Primary School: Developing the capacities to solve problems in mathematics Abstract: The present report is inserted in the context of the curricular unit Supervised Teaching Practice in Preschool Education and in Primary School, integrated in Master in Preschool Education and Teaching Primary School at University of Évora. This research was held in two different contexts, the first one was performed in a pre-school classroom, and later the second one in classroom of first year of Primary School. The main objective of the research was focused on the development of the capacities to solve mathematical problems either in small children, or later in the beginning of compulsory schooling. As so, the question guiding this investigation emerged: Which practices should I perform to help children/students become better problem solvers? After this, other three questions came up in order to help the research: How do children/students deal with solving problems? What strategies do children/students use to solve problems? What representations do children/students use to solve problems? Throughout this research a didactic intervention consisting in a sequence of mathematical tasks to explore the resolution of problems was performed, allowing data collection for a latter analysis, based not only on the objectives and initial research questions, but also on theoretical approaches consulted. We came to the conclusion that the ability of students to solve problems was improved with the methodology used in this research, meaning that, challenging students with problems using different strategies and representations, such as knowledge sharing and mathematical communication, are essential tools for effective intervention concerning problem solving.
Resumo:
RESUMEN La presente propuesta, nace por las dificultades de las matemáticas en los estudiantes, dicho tema después deun análisis previo,matrices, encuestas, revisión de información, reglamentos, etc., dio como resultado que se tenía que reformar el currículo de las matemáticas, para lo cual utilizando las directrices de las instituciones de Educación Superior, se generó el presente trabajo. En este proceso se tuvo que revisar y analizar el macro currículoponiendo mucho énfasis en el enfoque pedagógico, la visión y misión de la universidad, la carreras estas deberán estar enlazadaentre ellas y deben ser coherentes entre sí como eje fundamental para establecer los perfiles. Usando los Perfil Consultado, resultados de aprendizaje (Perfil de egreso), que no es más que los procesos que el estudiante logra como resultado de su aprendizaje y Perfil profesional capacidades y competencias que identifican la formación, estos deben demostrar que han sido definidos en base a estudios de las necesidades de la sociedad, esto es conocido como el meso currículo. Una vez que existe la conexión entre el perfil profesional, el perfil de egreso y la misión de la carrera, se procedió cumplir con el proceso de desarrollar el respectivo análisis del diseño curricular de la carrera. Finalmente se analizó el micro currículo, los resultados de aprendizaje del área de matemáticas y se dio un modelo de silabo y plan de aula.
Resumo:
Variables aleatorias y distribuciones de probabilidad hace referencia a algunas distribuciones de probabilidad. Se recomienda en todo caso para abordar estos temas, tener claras las definiciones, propiedades y axiomas para lograr éxito en la solución de problemas; al final hay una serie de ejercicios propuestos que el lector debe intentar resolver. La colección Lecciones de matemáticas, iniciativa del Departamento de Ciencias Básicas de la Universidad de Medellín, a través de su grupo de investigación SUMMA, incluye en cada número la exposición detallada de un tema matemático, tratado con mayor profundidad que en un curso regular. Las temáticas incluyen: álgebra, trigonometría, cálculo, estadística y probabilidades, álgebra lineal, métodos lineales y numéricos, historia de las matemáticas, geometría, matemáticas puras y aplicadas, ecuaciones diferenciales y empleo de softwares para la enseñanza de las matemáticas.
Resumo:
Matemáticas básicas con aplicaciones a las ciencias económicas y afines propone al inicio del libro la aritmética materializada en la descripción de los conjuntos numéricos y una teoría general sobre conjuntos y sus operaciones; adicionalmente, se presentan tres capítulos sobre elementos básicos del álgebra elemental. En los capítulos restantes se plantean temas como: inecuaciones, ecuaciones, un estudio de operadores, función exponencial y logarítmica y una pequeña reseña de trigonometría al final del texto. Al final de casi todos los capítulos hay una sección donde aparecen las instrucciones para revolver ejercicios empleando el programa MATLAB, que simplifica los procesos operativos dando paso a la posibilidad de análisis e interpretación de los resultados, así los estudiantes podrán valorar la importancia del uso de la tecnología para optimizar los procesos de cálculo.
Resumo:
Tras una introducción, en la que los autores expresan su manera de entender la resolución de problemas, este articulo trata de poner de relieve el importante papel que ésta desempeña como dinamizadora de un aprendizaje constructivista. En concreto, se utiliza un ejemplo para explicitar una forma de construir conocimiento significativo relativo a números, a las propias estrategias de resolución e incluso a actitudes deseables para cualquier persona. En definitiva, este trabajo intenta acercar al profesor de secundaria reflexiones extraídas en un proceso de investigación, alentando de esta forma lo útil, a la vez que necesaria, colaboración entre docentes e investigadores.
Resumo:
Teoría de la probabilidad, contiene definiciones y terminología de frecuente uso en esta parte de las matemáticas; también se exponen distintos métodos de solución y las reglas esenciales del análisis combinatorio que proporcionan, en muchas ocasiones, una vía más cómoda en la solución de problemas; además se enuncia el Teorema de Bayes y su adjunto, de la probabilidad total. Todos los temas son ilustrados con ejemplos y problemas resueltos; al final hay una serie de ejercicios propuestos que el lector debe intentar resolver. La colección lecciones de matemáticas, iniciativa del departamento de ciencias básicas de la universidad de Medellín, a través de su grupo de investigación SUMMA, incluye en cada número la exposición detallada de un tema matemático, tratado con mayor profundidad que en un curso regular. Las temáticas incluyen: algebra, trigonometría, calculo, estadística y probabilidades, algebra lineal, métodos lineales y numéricos, historia de las matemáticas, geometría, matemáticas puras y aplicadas, ecuaciones diferenciales y empleo de distintos softwares para la enseñanza de las matemáticas.
Resumo:
En este trabajo se estudia una clase particular de problemas de programación binivel en donde las funciones objetivo de ambos niveles y las restricciones son lineales. Además se considera el problema del nivel inferior como un problema de programación por intervalos, en donde los coeficientes intervalos aparecen solamente en los lados derechos de las restricciones. Es decir, se asume que los lados derechos de las restricciones del nivel inferior no se conocen con exactitud sino que están dados por un intervalo delimitando un intervalo de valores. Este hecho aumenta significativamente la complejidad del problema binivel debido a que la región factible del nivel inferior no se conoce con exactitud y por consecuencia, la reacción ´optima del seguidor no puede ser obtenida de forma general repercutiendo directamente en la decisión del líder. La existencia de esta incertidumbre en el nivel inferior evita la posibilidad de obtener una solución óptima binivel que sea factible para todo el intervalo de los lados derechos. Es por esto, que se definen las soluciones robustas binivel. Se estudian dichas soluciones robustas binivel, se analizan algunas de sus propiedades y se propone una metodología eficiente para encontrar el óptimo del problema partiendo de la solución robusta binivel. La metodología propuesta se valida y ejemplifica con algunos ejemplos numéricos mostrando que el esquema de solución propuesto es conveniente para resolver este tipo de problemas.
Resumo:
Este trabajo se centra en fundamentar el proceso de enseñanza aprendizaje de la Matemática en Séptimo grado de Educación Básica, enfocada en aspectos teóricos y metodológicos sobre la Resolución de Problemas. Realiza un diagnóstico sobre las tendencias metodológicas de maestros y maestras en sus prácticas didácticas en relación a las competencias educativas, que sirve de sustento para orientar y construir de manera participativa el trabajo de investigación. Objetivo: Diseñar una propuesta metodológica para fundamentar el proceso de enseñanza-aprendizaje de la Matemática en Séptimo grado de Educación Básica, enfocada en la resolución de problemas. Metodología: de carácter documental basada en un diagnóstico de una muestra en docentes de diez centros escolares de la Zona Oriental como resultado se diseñó una Propuesta Metodológica fundamentada en la resolución de problemas para el desarrollo del programa de Matemáticas de séptimo grado del Centro Escolar Cantón El Papalón de San Miguel. Conclusiones: Los docentes siguen utilizando la forma tradicional de enseñar matemáticas (pizarrón-marcador) no contribuyendo a estimular los procesos cognitivos del estudiante, asimismo, los estudiantes no son un ente activo dentro del proceso de enseñanza aprendizaje debido a que la mayoría de los docentes reflejan un nivel deficiente en la lectura del programa de matemáticas de séptimo grado, utilizando un enfoque conductista sin aplicar la resolución de problemas.
Resumo:
Desde 1994 se ha realizado un proyecto de extensión universitaria para apoyar el aprendizaje de las matemáticas en estudiantes y a trabajadores de nivel medio superior que aspiran a ingresar en este nivel. El objetivo de este proyecto es consolidar los contenidos impartidos desarrollando un nivel superior de habilidades para resolver problemas de diversa índole y propiciar un clima de estudio en estos jóvenes. En el trabajo se expone la forma de organización de los grupos acorde al nivel de partida y la metodología para solucionar las deficiencias detectadas en una prueba de diagnóstico inicial, que incluye los procedimientos aplicados en las diferentes clases y la dosificación de ejercicios a los grupos de estudiantes para que transiten por los diferentes niveles de asimilación y así lograr un alto grado de preparación de estos estudiantes para la prueba de ingreso. Se hacen valoraciones en cuanto al aprendizaje de las matemáticas y al grado de aceptación de los interesados, manifestado a través de avales que se han recibido en nuestros departamentos.
Resumo:
El objetivo principal de esta aplicación es fomentar el aprendizaje autónomo del estudiante y desarrollar una nueva manera más didáctica de aprender. Todos los estudiantes de Ingeniería han pasado por esta etapa en la que cada semestre debemos llevar una parte de matemáticas , algunos son muy hábiles para este tipo de materias pero algunos otros prefieren clases más activas o ejercicios más didácticos y es aquí donde entra la idea de crear una aplicación de matemáticas (Integrales) la cual podrán tender un acceso rápido simplemente descargándolo desde su Play Store , esta App es nueva e innovadora pues ha pasado las matemáticas de antes con muchos libros y ejercicios que muchas veces no comprenden debido a que buscan la información en el libro pero viene mucho de todo y es mucho más confuso comprenderlo eso ha terminado pues en cada problema a resolver de nuestra aplicación tendrás la información exacta que ocuparas para poder resolver con facilidad, además a todos les gusta interactuar con el celular , porque no hacerlo de una manera educativa la cual nos ayude a desarrollar nuestra habilidad matemática.