974 resultados para Infinite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. Afterwards, we prove Euler-Lagrange type equations and transversality conditions for generalized infinite horizon problems. Next we investigate the composition of a certain scalar function with delta and nabla integrals of a vector valued field. Euler-Lagrange equations in integral form, transversality conditions, and necessary optimality conditions for isoperimetric problems, on an arbitrary time scale, are proved. In the end, two main issues of application of time scales in economic, with interesting results, are presented. In the former case we consider a firm that wants to program its production and investment policies to reach a given production rate and to maximize its future market competitiveness. The model which describes firm activities is studied in two different ways: using classical discretizations; and applying discrete versions of our result on time scales. In the end we compare the cost functional values obtained from those two approaches. The latter problem is more complex and relates to rate of inflation, p, and rate of unemployment, u, which inflict a social loss. Using known relations between p, u, and the expected rate of inflation π, we rewrite the social loss function as a function of π. We present this model in the time scale framework and find an optimal path π that minimizes the total social loss over a given time interval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La compression des données est la technique informatique qui vise à réduire la taille de l’information pour minimiser l’espace de stockage nécessaire et accélérer la transmission des données dans les réseaux à bande passante limitée. Plusieurs techniques de compression telles que LZ77 et ses variantes souffrent d’un problème que nous appelons la redondance causée par la multiplicité d’encodages. La multiplicité d’encodages (ME) signifie que les données sources peuvent être encodées de différentes manières. Dans son cas le plus simple, ME se produit lorsqu’une technique de compression a la possibilité, au cours du processus d’encodage, de coder un symbole de différentes manières. La technique de compression par recyclage de bits a été introduite par D. Dubé et V. Beaudoin pour minimiser la redondance causée par ME. Des variantes de recyclage de bits ont été appliquées à LZ77 et les résultats expérimentaux obtenus conduisent à une meilleure compression (une réduction d’environ 9% de la taille des fichiers qui ont été compressés par Gzip en exploitant ME). Dubé et Beaudoin ont souligné que leur technique pourrait ne pas minimiser parfaitement la redondance causée par ME, car elle est construite sur la base du codage de Huffman qui n’a pas la capacité de traiter des mots de code (codewords) de longueurs fractionnaires, c’est-à-dire qu’elle permet de générer des mots de code de longueurs intégrales. En outre, le recyclage de bits s’appuie sur le codage de Huffman (HuBR) qui impose des contraintes supplémentaires pour éviter certaines situations qui diminuent sa performance. Contrairement aux codes de Huffman, le codage arithmétique (AC) peut manipuler des mots de code de longueurs fractionnaires. De plus, durant ces dernières décennies, les codes arithmétiques ont attiré plusieurs chercheurs vu qu’ils sont plus puissants et plus souples que les codes de Huffman. Par conséquent, ce travail vise à adapter le recyclage des bits pour les codes arithmétiques afin d’améliorer l’efficacité du codage et sa flexibilité. Nous avons abordé ce problème à travers nos quatre contributions (publiées). Ces contributions sont présentées dans cette thèse et peuvent être résumées comme suit. Premièrement, nous proposons une nouvelle technique utilisée pour adapter le recyclage de bits qui s’appuie sur les codes de Huffman (HuBR) au codage arithmétique. Cette technique est nommée recyclage de bits basé sur les codes arithmétiques (ACBR). Elle décrit le cadriciel et les principes de l’adaptation du HuBR à l’ACBR. Nous présentons aussi l’analyse théorique nécessaire pour estimer la redondance qui peut être réduite à l’aide de HuBR et ACBR pour les applications qui souffrent de ME. Cette analyse démontre que ACBR réalise un recyclage parfait dans tous les cas, tandis que HuBR ne réalise de telles performances que dans des cas très spécifiques. Deuxièmement, le problème de la technique ACBR précitée, c’est qu’elle requiert des calculs à précision arbitraire. Cela nécessite des ressources illimitées (ou infinies). Afin de bénéficier de cette dernière, nous proposons une nouvelle version à précision finie. Ladite technique devienne ainsi efficace et applicable sur les ordinateurs avec les registres classiques de taille fixe et peut être facilement interfacée avec les applications qui souffrent de ME. Troisièmement, nous proposons l’utilisation de HuBR et ACBR comme un moyen pour réduire la redondance afin d’obtenir un code binaire variable à fixe. Nous avons prouvé théoriquement et expérimentalement que les deux techniques permettent d’obtenir une amélioration significative (moins de redondance). À cet égard, ACBR surpasse HuBR et fournit une classe plus étendue des sources binaires qui pouvant bénéficier d’un dictionnaire pluriellement analysable. En outre, nous montrons qu’ACBR est plus souple que HuBR dans la pratique. Quatrièmement, nous utilisons HuBR pour réduire la redondance des codes équilibrés générés par l’algorithme de Knuth. Afin de comparer les performances de HuBR et ACBR, les résultats théoriques correspondants de HuBR et d’ACBR sont présentés. Les résultats montrent que les deux techniques réalisent presque la même réduction de redondance sur les codes équilibrés générés par l’algorithme de Knuth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph. D.)--University of Washington, 1998

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Geografia (Geografia Física), Universidade de Lisboa, Instituto de Geografia e Ordenamento do Território, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino de Artes Visuais, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Estudos de Literatura e de Cultura (Estudos de Literatura e de Cultura de Expressão Alemão), Universidade de Lisboa, Faculdade de Letras, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world is all that there is. In the world, ontology and epistemology coincide. The thing and the perspective are part of it, scale is ingested in its multiplicity, communication stops at the world's edge. By reading together Deleuze and Guattari's plane of immanence and Niklas Luhmann's proto-global concept of Weltgesellschaft (“world society”), I suggest a conceptualisation of the world as the materiality of the multiple spaces of creation in an insular, all-inclusive immanence. Deprived of an outside, the world pushes its own understanding of circumference through, first, the expansion of its own limits through the process of worlding, and, second, the multiplication of modes of material (self-)production through its process of othering. Thus, the world swells up from the inside and expands on both the material and the semantic level, producing a multiplicity of fractal microcosms. Issues of responsibility and justice arise that are intricately linked to the materiality of the world and take place in and between the various bodies and spaces of the world but without an overarching hierarchy or principle. This approach is a way of counteracting the all-pervasive Hegelian understanding of synthesis, arguing instead for a plenitude that brims with positivity and that can never become fully complete. The world remains its own infinite process of worlding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação submetida à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Artes Performativas – vertente Teatro-Música.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tese desenvolvida tem como foco fornecer os meios necessários para extrair conhecimento contidos no histórico académico da instituição transformando a informação em algo simples e de fácil leitura para qualquer utilizador. Com o progresso da sociedade, as escolas recebem milhares de alunos todos os anos que terão de ser orientados e monitorizados pelos dirigentes das instituições académicas de forma a garantir programas eficientes e adequados para o progresso educacional de todos os alunos. Atribuir a um docente a responsabilidade de actuar segundo o historial académico dos seus alunos não é plausível uma vez que um aluno consegue produzir milhares de registos para análise. O paradigma de mineração de dados na educação surge com a necessidade de otimizar os recursos disponíveis expondo conclusões que não se encontram visiveis sem uma análise acentuada e cuidada. Este paradigma expõe de forma clara e sucinta os dados estatísticos analisados por computador oferecendo a possibilidade de melhorar as lacunas na qualidade de ensino das instituições. Esta dissertação detalha o desenvolvimento de uma ferramente de inteligência de negócio capaz de, através de mineração de dados, analisar e apresentar conclusões pertinentes de forma legível ao utilizador.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An infinite-horizon discrete time model with multiple size-class structures using a transition matrix is built to assess optimal harvesting schedules in the context of Non-Industrial Private Forest (NIPF) owners. Three model specifications accounting for forest income, financial return on an asset and amenity valuations are considered. Numerical simulations suggest uneven-aged forest management where a rational forest owner adapts her or his forest policy by influencing the regeneration of trees or adjusting consumption dynamics depending on subjective time preference and market return rate dynamics on the financial asset. Moreover she or he does not value significantly non-market benefits captured by amenity valuations relatively to forest income.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies a risk measure inherited from ruin theory and investigates some of its properties. Specifically, we consider a value-at-risk (VaR)-type risk measure defined as the smallest initial capital needed to ensure that the ultimate ruin probability is less than a given level. This VaR-type risk measure turns out to be equivalent to the VaR of the maximal deficit of the ruin process in infinite time. A related Tail-VaR-type risk measure is also discussed.