997 resultados para Flash evaporated films
Resumo:
Hybrid ZnO/ormosils Elms are prepared by the sol-gel method. A FT-IR spectrometer, 900 UV/VIS/NIR spectrophotometer, atomic force microscope, and ellipsometer are employed to investigate microstructure and optical properties of the films fired at different temperatures. The results show that the films with high transmittance and low surface roughness could be obtained at the heat-treatment temperature of 150 degrees C, the refractive index and thickness of the film are 1.413, 2.11 mu m, respectively. Higher temperatures (350 degrees C, 550 degrees C) change the Elm microstructure severely, and then decrease the transmittance of the films.
Resumo:
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (alpha-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface., The optimum annealing temperature of sapphire substrates is given. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Crystalline beta-BBO thin films have been successfully prepared on (001)-oriented Sr2+-doped alpha-BBO substrates using liquid phase epitaxy and pulsed laser deposition techniques. The films were characterized by X-ray diffraction and X-ray rocking curve (XRC). The present results manifest that the beta-BBO thin films grown on Sr2+-doped alpha-BBO substrates have larger degree of orientation f-value and smaller XRC FWHM than the ones grown on other reported substrates. Compared with other substrates, alpha-BBO has the same UV cutoff and the similar structure to beta-BBO. These results reveal that alpha-BBO single crystal may be a promising substrate proper to the growth of beta-BBO films. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Structural and optical properties were investigated for ZnO films grown on (100) and (001) gamma-LiAlO2 (LAO) substrates by pulsed laser deposition method. According XRD results, it is intuitionistic that (100) LAO is suitable for fabricating high quality ZnO film, while (001) LAO is unsuitable. The FWHM of XRD, stress in film and FWHM of UV PL spectra for ZnO films on (100) LAO show a decreasing with increasing substrate temperature from 300 to 600 degrees C. ZnO film fabricated at 600 degrees C has the greatest grain size, the smallest stress (0.47 Gpa) and PL FWHM value (similar to 85 meV). This means that the substrate temperature of 600 degrees C is optimum for ZnO film deposited on (100) LAO. Moreover, it was found that the UV PL spectra intensity of ZnO film is not only related to the grain size and stoichiometric, but also depends on the stress in the film.
Resumo:
Lattice-matched (Delta(a/a) = 1.8-3.4%) (001) LiGaO2 substrates have been employed for the first time to grow ZnO thin films by pulsed-laser deposition at 350-650 degrees C with oxygen partial pressure of 20Pa. XRD shows that a highly c-axis-oriented ZnO film can be deposited on (001) LiGaO2 substrate at 500 degrees C. AFM images reveal the surfaces of as-deposited ZnO films are smooth and root-mean-square values are 6.662, 5.765 and 6.834 nm at 350, 500 and 650 degrees C, respectively. PL spectra indicate only near-band-edge UV emission appears in the curve of ZnO film deposited at 500 degrees C. The deep-level emission of ZnO film deposited at 650 degrees C probably results from Li diffusion into the film. All the results illustrate substrate temperature plays a pretty important role in obtaining ZnO film with a high quality on LiGaO2 substrate by pulsed-laser deposition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ZnO thin films were grown on (0001)LiNbO3 substrates by the MOCVD technique. The substrate temperatures during growth were changed from 400 to 600 degrees C. The X-ray diffraction (XRD) pattern of the ZnO film showed a strong [002] reflection peak, and the peak intensity was dependent on substrate temperature. The ZnO columnar grains were highly oriented along the (002) direction when the film processing temperature was 600 degrees C. The optical transmission and PL results also indicated that highest crystalline quality of the ZnO films could be obtained at elevated temperatures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
ZnO films were grown on (0 0 0 1) LiNbO3 substrates by metal organic chemical vapor deposition (MOCVD). Annealing of ZnO films was performed in air for I h at 800 degrees C. The effects of annealing on the structural and optical properties of ZnO thin films on LiNbO3 substrates were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD patterns and AFM showed that the as-grown and the annealed ZnO films grown on LiNbO3 substrates had c-axis preferential orientation, the crystallinity of the ZnO films grown on LiNbO3 Substrates was improved, and the grain size increased by annealing. The PL spectra showed that the intensity of the UV near-band-edge peak was increased after annealing, while the intensity of visible peak (deep-level emission) decreased. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thin films of beta barium borate have been prepared by liquid phase epitaxy on Si2+-doped alpha-BaB2O4 (alpha-BBO, the high temperature phase of barium berate) (001) and (110) substrates. The results of X-ray diffraction indicate that the films show highly (001) preferred orientation on (001)-oriented substrates while the films grown on (110) substrates are textured with (140) orientation. The crystallinity of these films was found to depend on growth temperature, rotation rate, dip time and orientation of substrate. Growth conditions were optimized to grow films with (001) orientation on (001) substrates reproducibly. The films show second harmonic generation of 400 nm light upon irradiation with 800 nm Ti: Sapphire femtosecond laser light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
About Phi 45 mm LiAlO2 single crystal was grown by Czochralski (Cz) technique. However, the full-width at half-maximum (FWHM) value was high to 116.9 arcsec. After three vapor transport equilibration (VTE) processes, we can obtain high-quality LiAlO2 slice with the FWHM value of 44.2 arcsec. ZnO films were fabricated on as-grown slices and after-VTE ones by pulsed laser deposition (PLD). It was found that ZnO films on the two slices have similar crystallinity, optical transmittance and optical band gap at room temperature. These results not only show that LAO substrate is suitable for ZnO growth, but also prove that the crystal quality of LAO substrate slightly affects the structural and optical properties of ZnO film.
Resumo:
ZnO thin films were grown on single-crystal gamma-LiAlO2 (LAO) and sapphire (0001) substrate by pulsed laser deposition (PLD). The structural, optical and electrical properties of ZnO films were investigated. The results show that LAO is more suitable for fabricating ZnO films than sapphire substrate and the highest-quality ZnO film was attained on LAO at the substrate temperature of 550 degrees C. However, when the substrate temperature rises to 700 degrees C, lithium would diffuse from the substrate (LAO) into ZnO film which makes ZnO film on LAO becomes polycrystalline without preferred orientation, the stress in ZnO film increases dominantly and the resistivity of the film decreases exponentially. (c) 2005 Elsevier B.V. All rights reserved.