970 resultados para CADMIUM TELLURIDE DETECTORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gain mechanism in GaN Schottky barrier ultraviolet photodetectors is investigated by focused light beam. When the incident light illuminates the central region of the Schottky contact electrode, the responsivity changes very little with the increase of reverse bias voltage. However, when the incident light illuminates the edge region of the electrode, the responsivity increases remarkably with the increase of reverse bias voltage, and the corresponding quantum efficiency could be even higher than 100%. It is proposed that the surface states near the edge of the electrode may lead to a reduction of effective Schottky barrier height and an enhancement of electron injection, resulting in the anomalous gain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using AlSb buffer layers. Optimization of AlSb growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of AlSb layers are found to be 450 degrees C and 2.1 nm, respectively. A rms surface roughness of 0.67 nm over 10 x 10 mu m(2) is achieved as a 0.5 mu m GaSb film is grown under optimized conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visible-blind p-i-n avalanche photodiodes (APDs) were fabricated with high-quality GaN epilayers deposited on c-plane sapphire substrates by metal-organic chemical vapour deposition. Due to low dislocation density and a sophisticated device fabrication process, the dark current was as small as similar to 0.05 nA under reverse bias up to 20V for devices with a large diameter of 200 mu m, which was among the largest device area for GaN-based p-i-n APDs yet reported. When the reverse bias exceeded 38V the dark current increased sharply, exhibiting a bulk avalanche field-dominated stable breakdown without microplasma formation or sidewall breakdown. With ultraviolet illumination (360 nm) an avalanche multiplication gain of 57 was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-photon excited fluorescence from CdSe quantum dots on a two-dimensional SiN photonic crystal surface is investigated by using a femtosecond laser. By using a photonic crystal, a 90-fold enhancement in the two-photon excited fluorescence in the vertical direction is achieved. This is the highest enhancement achieved so far in the two-photon excited fluorescence in the vertical direction. The mechanism of the enhancement for two-photon excited fluorescence from quantum dots on photonic crystals is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-quality Ge film was epitaxially grown on silicon on insulator using the ultrahigh vacuum chemical vapor deposition. In this paper, we demonstrated that the efficient 1 4 germanium-on-silicon p-i-n photodetector arrays with 1.0 mu m Ge film had a responsivity as high as 0.65 A/W at 1.31 mu m and 0.32 A/W at 1.55 mu m, respectively. The dark current density was about 0.75 mA/cm(2) at 0 V and 13.9 mA/cm(2) at 1.0 V reverse bias. The detectors with a diameter of 25 mu m were measured at 1550 nm incident light under 0 V bias, and the result showed that the 3-dB bandwidth is 2.48 GHz. At a reverse bias of 3 V, the bandwidth is about 13.3 GHz. The four devices showed a good consistency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface plasmons(SPs) generated in nano metallic gratings on medium layer can greatly enhance the transmission field through the metallic gratings. The enhancement effect is achieved from lambda = 500 nm to near-infrared domain. The enhancement rate is about 110 % at the wavelength of about 6 10 nm and about 180 % at lambda = 700 nm and 740 nm where most kinds of thin film solar cells have a high spectral response. These structures should provide a promising way to increase the coupling efficiency of thin film solar cells and optical detectors of different wavelength response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.