980 resultados para Bayesian probability
Resumo:
Tephra horizons are potentially perfect time markers for dating and cross-correlation among diverse Holocene palaeoenvironmental records such as ice cores and marine and terrestrial sequences, but we need to trust their age. Here we present a new age estimate of the Holocene Mjauvotn tephra A using accelerator mass spectrometry C-14 dates from two lakes on the Faroe Islands. With Bayesian age modelling it is dated to 6668-6533 cal. a BP (68.2% confidence interval) - significantly older and better constrained than the previous age. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
It is shown that, when expressing arguments in terms of their logarithms, the Laplace transform of a function is related to the antiderivative of this function by a simple convolution. This allows efficient numerical computations of moment generating functions of positive random variables and their inversion. The application of the method is straightforward, apart from the necessity to implement it using high-precision arithmetics. In numerical examples the approach is demonstrated to be particularly useful for distributions with heavy tails, Such as lognormal, Weibull, or Pareto distributions, which are otherwise difficult to handle. The computational efficiency compared to other methods is demonstrated for an M/G/1 queueing problem.
Resumo:
The development of methods providing reliable estimates of demographic parameters (e. g., survival rates, fecundity) for wild populations is essential to better understand the ecology and conservation requirements of individual species. A number of methods exist for estimating the demographics of stage-structured populations, but inherent mathematical complexity often limits their uptake by conservation practitioners. Estimating survival rates for pond-breeding amphibians is further complicated by their complex migratory and reproductive behaviours, often resulting in nonobservable states and successive cohorts of eggs and tadpoles. Here we used comprehensive data on 11 distinct breeding toad populations (Bufo calamita) to clarify and assess the suitability of a relatively simple method [the Kiritani-Nakasuji-Manly (KNM) method] to estimate the survival rates of stage-structured populations with overlapping life stages. The study shows that the KNM method is robust and provides realistic estimates of amphibian egg and larval survival rates for species in which breeding can occur as a single pulse or over a period of several weeks. The study also provides estimates of fecundity for seven distinct toad populations and indicates that it is essential to use reliable estimates of fecundity to limit the risk of under- or overestimating the survival rates when using the KNM method. Survival and fecundity rates for B. calamita populations were then used to define population matrices and make a limited exploration of their growth and viability. The findings of the study recently led to the implementation of practical conservation measures at the sites where populations were most vulnerable to extinction. © 2010 The Society of Population Ecology and Springer.
Resumo:
Radiocarbon dating is routinely used in paleoecology to build chronolo- gies of lake and peat sediments, aiming at inferring a model that would relate the sediment depth with its age. We present a new approach for chronology building (called “Bacon”) that has received enthusiastic attention by paleoecologists. Our methodology is based on controlling core accumulation rates using a gamma autoregressive semiparametric model with an arbitrary number of subdivisions along the sediment. Using prior knowledge about accumulation rates is crucial and informative priors are routinely used. Since many sediment cores are currently analyzed, using different data sets and prior distributions, a robust (adaptive) MCMC is very useful. We use the t-walk (Christen and Fox, 2010), a self adjusting, robust MCMC sampling algorithm, that works acceptably well in many situations. Outliers are also addressed using a recent approach that considers a Student-t model for radiocarbon data. Two examples are presented here, that of a peat core and a core from a lake, and our results are compared with other approaches.
Resumo:
The paper introduces a new modeling approach that represents the waiting times in an accident and emergency (A&E) department in a UK based national health service (NHS) hospital. The technique uses Bayesian networks to capture the heterogeneity of arriving patients by representing how patient covariates interact to influence their waiting times in the department. Such waiting times have been reviewed by the NHS as a means of investigating the efficiency of A&E departments (emergency rooms) and how they operate. As a result activity targets are now established based on the patient total waiting times with much emphasis on trolley waits.
Resumo:
We propose a complete application capable of tracking multiple objects in an environment monitored by multiple cameras. The system has been specially developed to be applied to sport games, and it has been evaluated in a real association-football stadium. Each target is tracked using a local importance-sampling particle filter in each camera, but the final estimation is made by combining information from the other cameras using a modified unscented Kalman filter algorithm. Multicamera integration enables us to compensate for bad measurements or occlusions in some cameras thanks to the other views it offers. The final algorithm results in a more accurate system with a lower failure rate. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3114605]
Resumo:
In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic rather than deterministic networks enabling a parametric control in the uncertainty of the underlying disorder-disease gene associations contained in the OMIM, on which the networks are based. From a structural investigation of the chromosome network, we identify three chromosome subgroups that reflect architectural differences in chromosome-disorder associations that are predictively exploitable for a functional analysis of diseases.
Resumo:
A benefit function transfer obtains estimates of willingness-to-pay (WTP) for the evaluation of a given policy at a site by combining existing information from different study sites. This has the advantage that more efficient estimates are obtained, but it relies on the assumption that the heterogeneity between sites is appropriately captured in the benefit transfer model. A more expensive alternative to estimate WTP is to analyze only data from the policy site in question while ignoring information from other sites. We make use of the fact that these two choices can be viewed as a model selection problem and extend the set of models to allow for the hypothesis that the benefit function is only applicable to a subset of sites. We show how Bayesian model averaging (BMA) techniques can be used to optimally combine information from all models. The Bayesian algorithm searches for the set of sites that can form the basis for estimating a benefit function and reveals whether such information can be transferred to new sites for which only a small data set is available. We illustrate the method with a sample of 42 forests from U.K. and Ireland. We find that BMA benefit function transfer produces reliable estimates and can increase about 8 times the information content of a small sample when the forest is 'poolable'. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.
Resumo:
An important issue in risk analysis is the distinction between epistemic and aleatory uncertainties. In this paper, the use of distinct representation formats for aleatory and epistemic uncertainties is advocated, the latter being modelled by sets of possible values. Modern uncertainty theories based on convex sets of probabilities are known to be instrumental for hybrid representations where aleatory and epistemic components of uncertainty remain distinct. Simple uncertainty representation techniques based on fuzzy intervals and p-boxes are used in practice. This paper outlines a risk analysis methodology from elicitation of knowledge about parameters to decision. It proposes an elicitation methodology where the chosen representation format depends on the nature and the amount of available information. Uncertainty propagation methods then blend Monte Carlo simulation and interval analysis techniques. Nevertheless, results provided by these techniques, often in terms of probability intervals, may be too complex to interpret for a decision-maker and we, therefore, propose to compute a unique indicator of the likelihood of risk, called confidence index. It explicitly accounts for the decisionmaker’s attitude in the face of ambiguity. This step takes place at the end of the risk analysis process, when no further collection of evidence is possible that might reduce the ambiguity due to epistemic uncertainty. This last feature stands in contrast with the Bayesian methodology, where epistemic uncertainties on input parameters are modelled by single subjective probabilities at the beginning of the risk analysis process.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.