9 resultados para Bayesian probability
em CaltechTHESIS
Resumo:
A Bayesian probabilistic methodology for on-line structural health monitoring which addresses the issue of parameter uncertainty inherent in problem is presented. The method uses modal parameters for a limited number of modes identified from measurements taken at a restricted number of degrees of freedom of a structure as the measured structural data. The application presented uses a linear structural model whose stiffness matrix is parameterized to develop a class of possible models. Within the Bayesian framework, a joint probability density function (PDF) for the model stiffness parameters given the measured modal data is determined. Using this PDF, the marginal PDF of the stiffness parameter for each substructure given the data can be calculated.
Monitoring the health of a structure using these marginal PDFs involves two steps. First, the marginal PDF for each model parameter given modal data from the undamaged structure is found. The structure is then periodically monitored and updated marginal PDFs are determined. A measure of the difference between the calibrated and current marginal PDFs is used as a means to characterize the health of the structure. A procedure for interpreting the measure for use by an expert system in on-line monitoring is also introduced.
The probabilistic framework is developed in order to address the model parameter uncertainty issue inherent in the health monitoring problem. To illustrate this issue, consider a very simplified deterministic structural health monitoring method. In such an approach, the model parameters which minimize an error measure between the measured and model modal values would be used as the "best" model of the structure. Changes between the model parameters identified using modal data from the undamaged structure and subsequent modal data would be used to find the existence, location and degree of damage. Due to measurement noise, limited modal information, and model error, the "best" model parameters might vary from one modal dataset to the next without any damage present in the structure. Thus, difficulties would arise in separating normal variations in the identified model parameters based on limitations of the identification method and variations due to true change in the structure. The Bayesian framework described in this work provides a means to handle this parametric uncertainty.
The probabilistic health monitoring method is applied to simulated data and laboratory data. The results of these tests are presented.
Resumo:
We aim to characterize fault slip behavior during all stages of the seismic cycle in subduction megathrust environments with the eventual goal of understanding temporal and spatial variations of fault zone rheology, and to infer possible causal relationships between inter-, co- and post-seismic slip, as well as implications for earthquake and tsunami hazard. In particular we focus on analyzing aseismic deformation occurring during inter-seismic and post-seismic periods of the seismic cycle. We approach the problem using both Bayesian and optimization techniques. The Bayesian approach allows us to completely characterize the model parameter space by searching a posteriori estimates of the range of allowable models, to easily implement any kind of physically plausible a priori information and to perform the inversion without regularization other than that imposed by the parameterization of the model. However, the Bayesian approach computational expensive and not currently viable for quick response scenarios. Therefore, we also pursue improvements in the optimization inference scheme. We present a novel, robust and yet simple regularization technique that allows us to infer robust and somewhat more detailed models of slip on faults. We apply such methodologies, using simple quasi-static elastic models, to perform studies of inter- seismic deformation in the Central Andes subduction zone, and post-seismic deformation induced by the occurrence of the 2011 Mw 9.0 Tohoku-Oki earthquake in Japan. For the Central Andes, we present estimates of apparent coupling probability of the subduction interface and analyze its relationship to past earthquakes in the region. For Japan, we infer high spatial variability in material properties of the megathrust offshore Tohoku. We discuss the potential for a large earthquake just south of the Tohoku-Oki earthquake where our inferences suggest dominantly aseismic behavior.
Resumo:
Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to NASA's Kepler mission, which has revolutionized the field of exoplanets in the last few years.
In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements---measurements of the inclination of a planet's orbit relative to the spin axis of its host star---to determine whether a dominant planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model comparison to distinguish between the predictions of several different migration models, we find that the data strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering migration models in this work, these methods may be used to test the predictions of any other spin-orbit misaligning mechanism.
We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on understanding the probability that any individual candidate might be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We also present a detailed procedure that can be used to securely and efficiently validate any individual transit candidate using detailed information of the signal's shape as well as follow-up observations, if available.
Finally, we calculate an empirical, non-parametric estimate of the shape of the radius distribution of small planets with periods less than 90 days orbiting cool (less than 4000K) dwarf stars in the Kepler catalog. This effort reveals several notable features of the distribution, in particular a maximum in the radius function around 1-1.25 Earth radii and a steep drop-off in the distribution larger than 2 Earth radii. Even more importantly, the methods presented in this work can be applied to a broader subsample of Kepler targets to understand how the radius function of planets changes across different types of host stars.
Resumo:
Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications.
Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake.
To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that can capture the uncertainties in EEW information and the decision process is used. This approach is called the Performance-Based Earthquake Early Warning, which is based on the PEER Performance-Based Earthquake Engineering method. Use of surrogate models is suggested to improve computational efficiency. Also, new models are proposed to add the influence of lead time into the cost-benefit analysis. For example, a value of information model is used to quantify the potential value of delaying the activation of a mitigation action for a possible reduction of the uncertainty of EEW information in the next update. Two practical examples, evacuation alert and elevator control, are studied to illustrate the ePAD framework. Potential advanced EEW applications, such as the case of multiple-action decisions and the synergy of EEW and structural health monitoring systems, are also discussed.
Resumo:
The epoch of reionization remains one of the last uncharted eras of cosmic history, yet this time is of crucial importance, encompassing the formation of both the first galaxies and the first metals in the universe. In this thesis, I present four related projects that both characterize the abundance and properties of these first galaxies and uses follow-up observations of these galaxies to achieve one of the first observations of the neutral fraction of the intergalactic medium during the heart of the reionization era.
First, we present the results of a spectroscopic survey using the Keck telescopes targeting 6.3 < z < 8.8 star-forming galaxies. We secured observations of 19 candidates, initially selected by applying the Lyman break technique to infrared imaging data from the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). This survey builds upon earlier work from Stark et al. (2010, 2011), which showed that star-forming galaxies at 3 < z < 6, when the universe was highly ionized, displayed a significant increase in strong Lyman alpha emission with redshift. Our work uses the LRIS and NIRSPEC instruments to search for Lyman alpha emission in candidates at a greater redshift in the observed near-infrared, in order to discern if this evolution continues, or is quenched by an increase in the neutral fraction of the intergalactic medium. Our spectroscopic observations typically reach a 5-sigma limiting sensitivity of < 50 AA. Despite expecting to detect Lyman alpha at 5-sigma in 7-8 galaxies based on our Monte Carlo simulations, we only achieve secure detections in two of 19 sources. Combining these results with a similar sample of 7 galaxies from Fontana et al. (2010), we determine that these few detections would only occur in < 1% of simulations if the intrinsic distribution was the same as that at z ~ 6. We consider other explanations for this decline, but find the most convincing explanation to be an increase in the neutral fraction of the intergalactic medium. Using theoretical models, we infer a neutral fraction of X_HI ~ 0.44 at z = 7.
Second, we characterize the abundance of star-forming galaxies at z > 6.5 again using WFC3 onboard the HST. This project conducted a detailed search for candidates both in the Hubble Ultra Deep Field as well as a number of additional wider Hubble Space Telescope surveys to construct luminosity functions at both z ~ 7 and 8, reaching 0.65 and 0.25 mag fainter than any previous surveys, respectively. With this increased depth, we achieve some of the most robust constraints on the Schechter function faint end slopes at these redshifts, finding very steep values of alpha_{z~7} = -1.87 +/- 0.18 and alpha_{z~8} = -1.94 +/- 0.23. We discuss these results in the context of cosmic reionization, and show that given reasonable assumptions about the ionizing spectra and escape fraction of ionizing photons, only half the photons needed to maintain reionization are provided by currently observable galaxies at z ~ 7-8. We show that an extension of the luminosity function down to M_{UV} = -13.0, coupled with a low level of star-formation out to higher redshift, can fit all available constraints on the ionization history of the universe.
Third, we investigate the strength of nebular emission in 3 < z < 5 star-forming galaxies. We begin by using the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope to investigate the strength of H alpha emission in a sample of 3.8 < z < 5.0 spectroscopically confirmed galaxies. We then conduct near-infrared observations of star-forming galaxies at 3 < z < 3.8 to investigate the strength of the [OIII] 4959/5007 and H beta emission lines from the ground using MOSFIRE. In both cases, we uncover near-ubiquitous strong nebular emission, and find excellent agreement between the fluxes derived using the separate methods. For a subset of 9 objects in our MOSFIRE sample that have secure Spitzer IRAC detections, we compare the emission line flux derived from the excess in the K_s band photometry to that derived from direct spectroscopy and find 7 to agree within a factor of 1.6, with only one catastrophic outlier. Finally, for a different subset for which we also have DEIMOS rest-UV spectroscopy, we compare the relative velocities of Lyman alpha and the rest-optical nebular lines which should trace the cites of star-formation. We find a median velocity offset of only v_{Ly alpha} = 149 km/s, significantly less than the 400 km/s observed for star-forming galaxies with weaker Lyman alpha emission at z = 2-3 (Steidel et al. 2010), and show that this decrease can be explained by a decrease in the neutral hydrogen column density covering the galaxy. We discuss how this will imply a lower neutral fraction for a given observed extinction of Lyman alpha when its visibility is used to probe the ionization state of the intergalactic medium.
Finally, we utilize the recent CANDELS wide-field, infra-red photometry over the GOODS-N and S fields to re-analyze the use of Lyman alpha emission to evaluate the neutrality of the intergalactic medium. With this new data, we derive accurate ultraviolet spectral slopes for a sample of 468 3 < z < 6 star-forming galaxies, already observed in the rest-UV with the Keck spectroscopic survey (Stark et al. 2010). We use a Bayesian fitting method which accurately accounts for contamination and obscuration by skylines to derive a relationship between the UV-slope of a galaxy and its intrinsic Lyman alpha equivalent width probability distribution. We then apply this data to spectroscopic surveys during the reionization era, including our own, to accurately interpret the drop in observed Lyman alpha emission. From our most recent such MOSFIRE survey, we also present evidence for the most distant galaxy confirmed through emission line spectroscopy at z = 7.62, as well as a first detection of the CIII]1907/1909 doublet at z > 7.
We conclude the thesis by exploring future prospects and summarizing the results of Robertson et al. (2013). This work synthesizes many of the measurements in this thesis, along with external constraints, to create a model of reionization that fits nearly all available constraints.
Resumo:
These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.
More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.
The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.
Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.
Resumo:
There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.
Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.
Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.
Resumo:
Current earthquake early warning systems usually make magnitude and location predictions and send out a warning to the users based on those predictions. We describe an algorithm that assesses the validity of the predictions in real-time. Our algorithm monitors the envelopes of horizontal and vertical acceleration, velocity, and displacement. We compare the observed envelopes with the ones predicted by Cua & Heaton's envelope ground motion prediction equations (Cua 2005). We define a "test function" as the logarithm of the ratio between observed and predicted envelopes at every second in real-time. Once the envelopes deviate beyond an acceptable threshold, we declare a misfit. Kurtosis and skewness of a time evolving test function are used to rapidly identify a misfit. Real-time kurtosis and skewness calculations are also inputs to both probabilistic (Logistic Regression and Bayesian Logistic Regression) and nonprobabilistic (Least Squares and Linear Discriminant Analysis) models that ultimately decide if there is an unacceptable level of misfit. This algorithm is designed to work at a wide range of amplitude scales. When tested with synthetic and actual seismic signals from past events, it works for both small and large events.
Resumo:
The Everett interpretation of quantum mechanics is an increasingly popular alternative to the traditional Copenhagen interpretation, but there are a few major issues that prevent the widespread adoption. One of these issues is the origin of probabilities in the Everett interpretation, which this thesis will attempt to survey. The most successful resolution of the probability problem thus far is the decision-theoretic program, which attempts to frame probabilities as outcomes of rational decision making. This marks a departure from orthodox interpretations of probabilities in the physical sciences, where probabilities are thought to be objective, stemming from symmetry considerations. This thesis will attempt to offer evaluations on the decision-theoretic program.