Semiring induced valuation algebras: Exact and approximate local computation algorithms


Autoria(s): Kohlas, J.; Wilson, N.
Data(s)

01/07/2008

Resumo

Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.

Identificador

http://pure.qub.ac.uk/portal/en/publications/semiring-induced-valuation-algebras-exact-and-approximate-local-computation-algorithms(797e6524-e668-4d25-9f11-4ace3c28418f).html

http://dx.doi.org/10.1016/j.artint.2008.03.003

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Kohlas , J & Wilson , N 2008 , ' Semiring induced valuation algebras: Exact and approximate local computation algorithms ' Artificial Intelligence , vol 172 , no. 11 , pp. 1360-1399 . DOI: 10.1016/j.artint.2008.03.003

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/1700/1702 #Artificial Intelligence #/dk/atira/pure/subjectarea/asjc/1700/1703 #Computational Theory and Mathematics
Tipo

article