975 resultados para 290301 Robotics and Mechatronics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a ludic proposal for programming learning of industrial robots to be developed by groups of engineering students. Two projects are presented: Tic-tac-toe Opponent Robot and Environmentalist Robot. The first project use competitive search techniques of the Artificial Intelligence, computational vision, electronic and pneumatic concepts for ability decision making for a robotic agent on the tic-tae-toe game. The second project consists of a game that contains a questions and answers database about environmental themes. An algorithm selects the group of questions to be answered by the player, analyses the answers and sends the result to a industrial robot through serial port. According with the player performance, the robot makes congratulation movements and giving a gift to the winner player. Otherwise, the robot makes movements, disapproving the player performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of new advanced technology on issues that concern meaningful information and its relation to studies of intelligence constitutes the main topic of the present paper. The advantages, disadvantages and implications of the synthetic methodology developed by cognitive scientists, according to which mechanical models of the mind, such as computer simulations or self-organizing robots, may provide good explanatory tools to investigate cognition, are discussed. A difficulty with this methodology is pointed out, namely the use of meaningless information to explain intelligent behavior that incorporates meaningful information. In this context, it is inquired what are the contributions of cognitive science to contemporary studies of intelligent behavior and how technology may play a role in the analysis of the relationships established by organisms in their natural and social environments. © John Benjamins Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current solutions implanted in the majority of manufacturing systems controlled by PLCs were developed through the language of programming known as ladder. Such a language, easily learned and handled, shows to be efficient whenever the system to be implanted does not demand greater complexity of analyses. Bigger systems, presenting characteristics in which resource compartments, parallelism and synchronizing among processes are more frequent, demand the adoption of solutions differentiation. This article presents a teaching experience and practical application of Petri nets in a Mechatronics Engineering graduation course. Copyright © 2007 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severe disabled children have little chance of environmental and social exploration and discovery, and due this lack of interaction and independency, it may lead to an idea that they are unable to do anything by themselves. This idea is called learned helplessness and is very negative for the child cognitive development and social development as well. With this entire situation it is very likely that the self-steam and mood of this child. Trying to help these children on this situation, educational robotics can offer and aid, once it can give them a certain degree of independency in exploration of environment. The system developed in this work allows the child to transmit the commands to a robot. Sensors placed on the child's body can obtain information from head movement or muscle pulses to command the robot to carry the tasks. Also, this system can be used with a variety of robots, being necessary just a previous configuration. It is expected that, with the usage of this system, the disabled children have a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a generalized passivity concept for linear multivariable systems was obtained which allows circumventing the restrictiveness of the usual passivity concept. The latter is associated with the classical SPR (Strictly Positive Real) condition whereas the new concept of passivity is associated with the so called WSPR condition and its advantage in multivariable systems is that it does not require a restrictive symmetry condition of SPR systems. As a result, it allows the design of multivariable adaptive control that, unlike some existing factorization approaches, does not imply in additional overparameterization of the adaptive controller. In this paper, we complete a previously established WSPR sufficient condition and prove that it is also necessary. We also propose some methods of passification by either premultiplying the system output tracking error vector or the system input vector by an adequate passifying matrix multiplier, so that the resulting input/output transfer function becomes WSPR. The efficiency of our proposals are illustrated by simulation utilizing a well known robotics adaptive visual servoing problem. © 2011 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severely disabled children have little chance of environmental and social exploration and discovery. This lack of interaction and independency may lead to an idea that they are unable to do anything by themselves. In an attempt to help children in this situation, educational robotics can offer and aid, once it can provide them a certain degree of independency in the exploration of environment. The system developed in this work allows the child to transmit the commands to a robot through myoelectric and movement sensors. The sensors are placed on the child's body so they can obtain information from the body inclination and muscle contraction, thus allowing commanding, through a wireless communication, the mobile entertainment robot to carry out tasks such as play with objects and draw. In this paper, the details of the robot design and control architecture are presented and discussed. With this system, disabled children get a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional-order nonlinear dynamics equations of a two link robotic manipulator. The aformentioned equations have been simulated for several cases involving: integer and non-integer order analysis, with and without external forcing acting and some different initial conditions. The fractional nonlinear governing equations of motion are coupled and the time evolution of the angular positions and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the dynamics equations of a two link robotic manipulator have been modeled with the fractional Euler-Lagrange dynamics approach. The results reveal that the fractional-nonlinear robotic manipulator can exhibit different and curious behavior from those obtained with the standard dynamical system and can be useful for a better understanding and control of such nonlinear systems. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT AND PURPOSE: Partial nephrectomy has become the standard of care for renal tumors less than 4 cm in diameter. Controversy still exists, however, regarding the best surgical approach, especially when minimally invasive techniques are taken into account. Robotic-assisted laparoscopic partial nephrectomy (RALPN) has emerged as a promising technique that helps surgeons achieve the standards of open partial nephrectomy care while offering a minimally invasive approach. The objective of the present study was to describe our initial experience with robotic-assisted laparoscopic partial nephrectomy and extensively review the pertinent literature. MATERIALS AND METHODS: Between August 2009 and February 2010, eight consecutive selected patients with contrast enhancing renal masses observed by CT were submitted to RALPN in a private institution. In addition, we collected information on the patients' demographics, preoperative tumor characteristics and detailed operative, postoperative and pathological data. In addition, a PubMed search was performed to provide an extensive review of the robotic-assisted laparoscopic partial nephrectomy literature. RESULTS: Seven patients had RALPN on the left or right sides with no intraoperative complications. One patient was electively converted to a robotic-assisted radical nephrectomy. The operative time ranged from 120 to 300 min, estimated blood loss (EBL) ranged from 75 to 400 mL and, in five cases, the warm ischemia time (WIT) ranged from 18 to 32 min. Two patients did not require any clamping. Overall, no transfusions were necessary, and there were no intraoperative complications or adverse postoperative clinical events. All margins were negative, and all patients were disease-free at the 6-month follow-up. CONCLUSIONS: Robotic-assisted laparoscopic partial nephrectomy is a feasible and safe approach to small renal cortical masses.Further prospective studies are needed to compare open partial nephrectomy with its minimally invasive counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the new active absorption wave basin, named Hydrodynamic Calibrator (HC), constructed at the University of São Paulo (USP), in the Laboratory facilities of the Numerical Offshore Tank (TPN). The square (14 m 14 m) tank is able to generate and absorb waves from 0.5 Hz to 2.0 Hz, by means of 148 active hinged flap wave makers. An independent mechanical system drives each flap by means of a 1HP servo-motor and a ball-screw based transmission system. A customized ultrasonic wave probe is installed in each flap, and is responsible for measuring wave elevation in the flap. A complex automation architecture was implemented, with three Programmable Logic Computers (PLCs), and a low-level software is responsible for all the interlocks and maintenance functions of the tank. Furthermore, all the control algorithms for the generation and absorption are implemented using higher level software (MATLAB /Simulink block diagrams). These algorithms calculate the motions of the wave makers both to generate and absorb the required wave field by taking into account the layout of the flaps and the limits of wave generation. The experimental transfer function that relates the flap amplitude to the wave elevation amplitude is used for the calculation of the motion of each flap. This paper describes the main features of the tank, followed by a detailed presentation of the whole automation system. It includes the measuring devices, signal conditioning, PLC and network architecture, real-time and synchronizing software and motor control loop. Finally, a validation of the whole automation system is presented, by means of the experimental analysis of the transfer function of the waves generated and the calculation of all the delays introduced by the automation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Programming software for controlling robotic systems in order to built working systems that perform adequately according to their design requirements remains being a task that requires an important development effort. Currently, there are no clear programming paradigms for programming robotic systems, and the programming techniques which are of common use today are not adequate to deal with the complexity associated with these systems. The work presented in this document describes a programming tool, concretely a framework, that must be considered as a first step to devise a tool for dealing with the complexity present in robotics systems. In this framework the software that controls a system is viewed as a dynamic network of units of execution inter-connected by means of data paths. Each one of these units of execution, called a component, is a port automaton which provides a given functionality, hidden behind an external interface specifying clearly which data it needs and which data it produces. Components, once defined and built, may be instantiated, integrated and used as many times as needed in other systems. The framework provides the infrastructure necessary to support this concept for components and the inter communication between them by means of data paths (port connections) which can be established and de-established dynamically. Moreover, and considering that the more robust components that conform a system are, the more robust the system is, the framework provides the necessary infrastructure to control and monitor the components than integrate a system at any given instant of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Nowadays companies demand graduates able to work in multidisciplinary and collaborative projects. Hence, new educational methods are needed in order to support a more advanced society, and progress towards a higher quality of life and sustainability. The University of the Basque Country belongs to the European Higher Education Area, which was created as a result of the Bologna process to ensure the connection and quality of European national educational systems. In this framework, this paper proposes an innovative teaching methodology developed for the "Robotics" subject course that belongs to the syllabus of the B.Sc. degree in Industrial Electronics and Automation Engineering. We present an innovative methodology for Robotics learning based on collaborative projects, aimed at responding to the demands of a multidisciplinary and multilingual society.