956 resultados para weak approximation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EuTe possesses the centrosymmetric crystal structure m3m of rocksalt type in which the second-harmonic generation is forbidden in electric dipole approximation but the third-harmonic generation (THG) is allowed. We studied the THG spectra of this material and observed several resonances in the vicinity of the band gap at 2.2-2.5 eV and at higher energies up to 4 eV, which are related to four-photon THG processes. The observed resonances are assigned to specific combinations of electronic transitions between the ground 4f(7) state at the top of the valence band and excited 4f(6)5d(1) states of Eu(2+) ions, which form the lowest energy conduction band. Temperature, magnetic field, and rotational anisotropy studies allowed us to distinguish crystallographic and magnetic-field-induced contributions to the THG. A strong modification of THG intensity for the 2.4 eV band and suppression of the THG for the 3.15 eV band was observed in applied magnetic field. Two main features of the THG spectra were assigned to 5d(t(2g)) and 5d(e(g)) subbands at 2.4 eV and 3.15 eV, respectively. A microscopic quantum-mechanical model of the THG response was developed and its conclusions are in qualitative agreement with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eleven density functionals are compared with regard to their performance for the lattice constants of solids. We consider standard functionals, such as the local-density approximation and the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), as well as variations of PBE GGA, such as PBEsol and similar functionals, PBE-type functionals employing a tighter Lieb-Oxford bound, and combinations thereof. On a test set of 60 solids, we perform a system-by-system analysis for selected functionals and a full statistical analysis for all of them. The impact of restoring the gradient expansion and of tightening the Lieb-Oxford bound is discussed, and confronted with previous results obtained from other codes, functionals or test sets. No functional is uniformly good for all investigated systems, but surprisingly, and pleasingly, the simplest possible modifications to PBE turn out to have the most beneficial effect on its performance. The atomization energy of molecules was also considered and on a testing set of six molecules, we found that the PBE functional is clearly the best, the others leading to strong overbinding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a first-principles systematic study of the electronic structure of SiO(2) including the crystalline polymorphs alpha quartz and beta cristobalite, and different types of disorder leading to the amorphous phase. We start from calculations within density functional theory and proceed to more sophisticated quasiparticle calculations according to the GW scheme. Our results show that different origins of disorder have also different impact on atomic and electronic-density fluctuations, which affect the electronic structure and, in particular, the size of the mobility gap in each case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of dipolar interactions among Ni nanoparticles (NPs) embedded in an amorphous SiO(2)/C matrix with different concentrations has been studied performing ac magnetic susceptibility chi(ac) measurements. For very diluted samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neacuteel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neacuteel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetization and Mossbauer spectroscopy measurements are performed at low temperature under high field, on nanoparticles with a nickel ferrite core and a maghemite shell. These nanoparticles present finite size and surface effects, together with exchange anisotropy. High field magnetization brings the evidences of a monodomain ordered core and surface spins freezing in disorder at low temperature. Mossbauer spectra at 4.2 K present an extra contribution from the disordered surface which is field dependent. Field and size dependences of this latter show a progressive spin alignment along the ferrite core which is size dependent. The weak surface pinning condition of the nanoparticles confirms that the spin disorder is localized in the external shell. The underfield decrease in the mean canting angle in the superficial shell is then directly related to the unidirectional exchange anisotropy through the interface between the ordered core and the disordered shell. The obtained anisotropy field H(Ea) scales as the inverse of the nanoparticle diameter, validating its interfacial origin. The associated anisotropy constant K(Ea) equals 2.5 x 10(-4) J/m(2). (C) 2009 American Institute qf Physics. [doi: 10.1063/1.3245326]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetoresistance measurements in p-type Pb(1-x)Eu(x)Te alloys, for x varying from 0% up to 5%, have been used to investigate localization and antilocalization effects. These are attributed to both the spin-orbit scattering and to the large Zeeman splitting present in these alloys due to the large values of the effective Lande g factor. The magnetoresistance curves are analyzed using the model of Fukuyama and Hoshino, which takes into account the spin-orbit and Zeeman scattering mechanisms. The spin-orbit scattering time is found to be independent of the temperature, while the inelastic-scattering time increases with decreasing temperature suggesting the electron-phonon interaction as the main scattering mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.