982 resultados para transcutaneous electrical nerve stimulation
Resumo:
IL-2 immunotherapy is an attractive treatment option for certain metastatic cancers. However, administration of IL-2 to patients can lead, by ill-defined mechanisms, to toxic adverse effects including severe pulmonary edema. Here, we show that IL-2-induced pulmonary edema is caused by direct interaction of IL-2 with functional IL-2 receptors (IL-2R) on lung endothelial cells in vivo. Treatment of mice with high-dose IL-2 led to efficient expansion of effector immune cells expressing high levels of IL-2Rbetagamma, including CD8(+) T cells and natural killer cells, which resulted in a considerable antitumor response against s.c. and pulmonary B16 melanoma nodules. However, high-dose IL-2 treatment also affected immune cell lineage marker-negative CD31(+) pulmonary endothelial cells via binding to functional alphabetagamma IL-2Rs, expressed at low to intermediate levels on these cells, thus causing pulmonary edema. Notably, IL-2-mediated pulmonary edema was abrogated by a blocking antibody to IL-2Ralpha (CD25), genetic disruption of CD25, or the use of IL-2Rbetagamma-directed IL-2/anti-IL-2 antibody complexes, thereby interfering with IL-2 binding to IL-2Ralphabetagamma(+) pulmonary endothelial cells. Moreover, IL-2/anti-IL-2 antibody complexes led to vigorous activation of IL-2Rbetagamma(+) effector immune cells, which generated a dramatic antitumor response. Thus, IL-2/anti-IL-2 antibody complexes might improve current strategies of IL-2-based tumor immunotherapy.
Resumo:
OBJECT: The aim of this study was to evaluate the long-term safety and efficacy of bilateral contemporaneous deep brain stimulation (DBS) in patients who have levodopa-responsive parkinsonism with untreatable motor fluctuations. Bilateral pallidotomy carries a high risk of corticobulbar and cognitive dysfunction. Deep brain stimulation offers new alternatives with major advantages such as reversibility of effects, minimal permanent lesions, and adaptability to individual needs, changes in medication, side effects, and evolution of the disease. METHODS: Patients in whom levodopa-responsive parkinsonism with untreatable severe motor fluctuations has been clinically diagnosed underwent bilateral pallidal magnetic resonance image-guided electrode implantation while receiving a local anesthetic. Pre- and postoperative evaluations at 3-month intervals included Unified Parkinson's Disease Rating Scale (UPDRS) scoring, Hoehn and Yahr staging, 24-hour self-assessments, and neuropsychological examinations. Six patients with a mean age of 55 years (mean 42-67 years), a mean duration of disease of 15.5 years (range 12-21 years), a mean "on/off' Hoehn and Yahr stage score of 3/4.2 (range 3-5), and a mean "off' time of 40% (range 20-50%) underwent bilateral contemporaneous pallidal DBS, with a minimum follow-up period lasting 24 months (range 24-30 months). The mean dose of levodopa in these patients could not be changed significantly after the procedure and pergolide was added after 12 months in five patients because of recurring fluctuations despite adjustments in stimulation parameters. All but two patients had no fluctuations until 9 months. Two of the patients reported barely perceptible fluctuations at 12 months and two at 15 months; however, two patients remain without fluctuations at 2 years. The mean improvements in the UPDRS motor score in the off time and the activities of daily living (ADL) score were more than 50%; the mean off time decreased from 40 to 10%, and the mean dyskinesia and complication of treatment scores were reduced to one-third until pergolide was introduced at 12 months. No significant improvement in "on" scores was observed. A slight worsening after 1 year was observed and three patients developed levodopa- and stimulation-resistant gait ignition failure and minimal fluctuations at 1 year. Side effects, which were controlled by modulation of stimulation, included dysarthria, dystonia, and confusion. CONCLUSIONS: Bilateral pallidal DBS is safe and efficient in patients who have levodopa-responsive parkinsonism with severe fluctuations. Major improvements in motor score, ADL score, and off time persisted beyond 2 years after the operation, but signs of decreased efficacy started to be seen after 12 months.
Resumo:
BACKGROUND: Heerfordt syndrome is rare and is characterized by fever, uveitis, parotid gland enlargement, and facial nerve palsy. We hereby present a case of Heerfordt syndrome with unilateral facial nerve palsy as a presentation of sarcoidosis. HISTORY AND SIGNS: A 29-year-old male patient from Sri Lanka presented with eye redness OU, blurred vision OD, fever, headache, night sweat, fatigue, and weight loss (5 kg over 1 month). Examination revealed mild anterior uveitis OU, mild vitritis OD, fundus whitish lesions OU, left otalgia, taste disorders, bilateral parotid gland enlargement, and left facial nerve palsy. Work-up for infection or tumour was negative. Chest computed tomography and transbronchial lymph node biopsy set the diagnosis of sarcoidosis. THERAPY AND OUTCOME: The patient recovered completely within 2 months under therapy with prednisone and azathioprine. One year after onset of treatment, no recurrence was noted. CONCLUSIONS: Heerfordt syndrome is a rare manifestation of neurosarcoidosis and has to be included in the differential diagnosis of facial nerve palsy.
Resumo:
Tiivistelmä: Turvekasvualustan sähkönjohtavuuden ja vesipitoisuuden riippuvuus mitattuna TDR-käsimittarilla
Resumo:
Background: Providing analgesia without suppressing motor or sensory function is a challenge for regional anesthesia and postoperative pain management. Resiniferatoxin (RTX), an ultrapotent agonist for transient receptor potential subtype-1 (TRPV1) can produce this selective blockade, as TRPV1 is selectively expressed on nociceptors. Futhermore, after peripheral nerve injury, spontaneous ectopic activity arises from all types of nerve fibers that can affect spinal neurons and glial cells. The goal of the present experiment is to determine whether spontaneous activity generated in C-fibers or in both A&C-fibers is required for microglia activation. Method: We applied RTX (0.01%) or bupivacaine microspheres to the sciatic nerve of rats to block the conduction of C-fibers or A&C-fibers, respectively, before spared nerve injury (SNI). Behavior was tested and all the rats were sacrificed 2 days later; immunohistochemistry was performed on their spinal cord for mitogen-activated protein kinase (MAPK) p38, bromodeoxyuridine (BrdU, marker of proliferation) and Iba1 (microglial marker). Result: At day 2 after SNI robust mechanical allodynia and p38 activation in spinal microglia were documented. There was also a substantial cell proliferation in the spinal cord, all proliferating cells (BrdU+) being microglia (Iba1+). RTX blocked heat sensitivity and produced heat hypoalgesia without affecting mechanical allodynia and motor function. Microglial proliferation and p38 activation in the spinal cord were not affected by RTX (p >0.05). In contrast, a complete sensory and motor blockade was seen with bupivacaine which also significantly inhibited p38 activation and microglial proliferation in the spinal cord (p <0.05). Conclusion: We conclude that (1) RTX can provide a selective nociceptive blockade but that (2) blocking only nociceptive fibers does not impair the development of mechanical allodynia and microglia activation. Therefore (3) if microglia activation is important for chronic pain development then specific nociceptive blockade won't be sufficient to prevent it.
Resumo:
BACKGROUND: After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Adelta-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. RESULTS: SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. CONCLUSION: (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.
Resumo:
Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
The biochemical development of rotation-mediated aggregating brain cell cultures was studied in a serum-free chemically defined medium in the presence (complete medium) or the absence of triiodothyronine (T3). The expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP), two myelin components, was temporally dissociated in brain cell aggregating cultures grown in a complete medium. CNP increased from day 8 and reached a plateau around day 25. MBP accumulated rapidly from the third until the fourth week in culture. The total protein content increased gradually until day 25. The activity of ornithine decarboxylase (ODC) used as an index of cell growth and differentiation, showed two well-defined peaks of activity. The first peak reached a maximum at day 6 and correlated with both the highest DNA content and the peak of [3H]-thymidine incorporation. The second peak of ODC activity (from day 19 to 35) coincided with the differentiation of oligodendrocytes. These results confirm that aggregating fetal rat brain cells cultured in a serum-free chemically defined medium undergo extensive differentiation. Addition of T3 to the culture medium doubled the CNP activity by day 16. In contrast, MBP was only slightly increased by day 16, reaching at 25 and 35 days 8 to 10-fold higher values than the untreated cultures. When T3 was removed between day 16 and 25, CNP decreased almost to control values and MBP failed to accumulate. Moreover, when T3 was reintroduced into the medium (between day 25 and 35), CNP activity was restored and MBP content was partially corrected. T3 treatment produced a concentration-dependent increase in ODC activity which was observed only around day 19. The first peak of ODC activity observed at culture day 6 was independent of the presence of T3. These results obtained in brain cell cultures emphasize the direct effect of T3 on myelination.
Resumo:
While the morphological and electrophysiological changes underlying diabetic peripheral neuropathy (DPN) are relatively well described, the involved molecular mechanisms remain poorly understood. In this study, we investigated whether phenotypic changes associated with early DPN are correlated with transcriptional alterations in the neuronal (dorsal root ganglia [DRG]) or the glial (endoneurium) compartments of the peripheral nerve. We used Ins2(Akita/+) mice to study transcriptional changes underlying the onset of DPN in type 1 diabetes mellitus (DM). Weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Ins2(Akita/+) and control mice during the first three months of life in order to determine the onset of DPN. Based on this phenotypic characterization, we performed gene expression profiling using sciatic nerve endoneurium and DRG isolated from pre-symptomatic and early symptomatic Ins2(Akita/+) mice and sex-matched littermate controls. Our phenotypic analysis of Ins2(Akita/+) mice revealed that DPN, as measured by reduced MNCV, is detectable in affected animals already one week after the onset of hyperglycemia. Surprisingly, the onset of DPN was not associated with any major persistent changes in gene expression profiles in either sciatic nerve endoneurium or DRG. Our data thus demonstrated that the transcriptional programs in both endoneurial and neuronal compartments of the peripheral nerve are relatively resistant to the onset of hyperglycemia and hypoinsulinemia suggesting that either minor transcriptional alterations or changes on the proteomic level are responsible for the functional deficits associated with the onset of DPN in type 1 DM.
Resumo:
BACKGROUND: The purpose of the optic nerve sheath diameter (ONSD) research group project is to establish an individual patient-level database from high quality studies of ONSD ultrasonography for the detection of raised intracranial pressure (ICP), and to perform a systematic review and an individual patient data meta-analysis (IPDMA), which will provide a cutoff value to help physicians making decisions and encourage further research. Previous meta-analyses were able to assess the diagnostic accuracy of ONSD ultrasonography in detecting raised ICP but failed to determine a precise cutoff value. Thus, the ONSD research group was founded to synthesize data from several recent studies on the subject and to provide evidence on the diagnostic accuracy of ONSD ultrasonography in detecting raised ICP. METHODS: This IPDMA will be conducted in different phases. First, we will systematically search for eligible studies. To be eligible, studies must have compared ONSD ultrasonography to invasive intracranial devices, the current reference standard for diagnosing raised ICP. Subsequently, we will assess the quality of studies included based on the QUADAS-2 tool, and then collect and validate individual patient data. The objectives of the primary analyses will be to assess the diagnostic accuracy of ONSD ultrasonography and to determine a precise cutoff value for detecting raised ICP. Secondly, we will construct a logistic regression model to assess whether patient and study characteristics influence diagnostic accuracy. DISCUSSION: We believe that this IPD MA will provide the most reliable basis for the assessment of diagnostic accuracy of ONSD ultrasonography for detecting raised ICP and to provide a cutoff value. We also hope that the creation of the ONSD research group will encourage further study. TRIAL REGISTRATION: PROSPERO registration number: CRD42012003072.
Resumo:
Introduction: Carbon monoxide (CO) poisoning is one of the mostcommon causes of fatal poisoning. Symptoms of CO poisoning arenonspecific and the documentation of elevated carboxyhemoglobin(HbCO) levels in arterial blood sample is the only standard ofconfirming suspected exposure. The treatment of CO poisoning requiresnormobaric or hyperbaric oxygen therapy, according to the symptomsand HbCO levels. A new device, the Rad-57 pulse CO-oximeter allowsnoninvasive transcutaneous measurement of blood carboxyhemoglobinlevel (SpCO) by measurement of light wavelength absorptions.Methods: Prospective cohort study with a sample of patients, admittedbetween October 2008 - March 2009 and October 2009 - March 2010,in the emergency services (ES) of a Swiss regional hospital and aSwiss university hospital (Burn Center). In case of suspected COpoisoning, three successive noninvasive measurements wereperformed, simultaneously with one arterial blood HbCO test. A controlgroup includes patients admitted in the ES for other complaints (cardiacinsufficiency, respiratory distress, acute renal failure), but necessitatingarterial blood testing. Informed consent was obtained from all patients.The primary endpoint was to assess the agreement of themeasurements made by the Rad-57 (SpCO) and the blood levels(HbCO).Results: 50 patients were enrolled, among whom 32 were admittedfor suspected CO poisoning. Baseline demographic and clinicalcharacteristics of patients are presented in table 1. The median age was37.7 ans ± 11.8, 56% being male. Median laboratory carboxyhemoglobinlevels (HbCO) were 4.25% (95% IC 0.6-28.5) for intoxicated patientsand 1.8% (95% IC 1.0-5.3) for control patients. Only five patientspresented with HbCO levels >= 15%. The results disclose relatively faircorrelations between the SpCO levels obtained by the Rad-57 and thestandard HbCO, without any false negative results. However, theRad-57 tend to under-estimate the value of SpCO for patientsintoxicated HbCO levels >10% (fig. 1).Conclusion: Noninvasive transcutaneous measurement of bloodcarboxyhemoglobin level is easy to use. The correlation seems to becorrect for low to moderate levels (<15%). For higher values, weobserve a trend of the Rad-57 to under-estimate the HbCO levels. Apartfrom this potential limitation and a few cases of false-negative resultsdescribed in the literature, the Rad-57 may be useful for initial triageand diagnosis of CO.
Resumo:
Endogenous and infectious mouse mammary tumor viruses (MMTVs) encode in their 3' long terminal repeat a protein that exerts superantigen activity; that is, it is able to interact with T cells via the variable domain of the T cell receptor (TCR) beta chain. We show here that transmission of an infectious MMTV is prevented when superantigen-reactive cells are absent through either clonal deletion due to the expression of an endogenous MTV with identical superantigen specificity or exclusion due to expression of a transgenic TCR beta chain that does not interact with the viral superantigen. A strict requirement for superantigen-reactive T cells is also seen for a local immune response following MMTV infection. This immune response locally amplifies the number of MMTV-infected B cells, most likely owing to their clonal expansion. Collectively, our data indicate that a superantigen-induced immune response is critical for the MMTV life cycle.
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7±2.7% and 55.0±3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9±1.9% to 33.5±0.7% (p<0.01) and the total Nedd4-2 protein to 44%±0.13% of its basal level (p<0.01, n=4 animals in each group, mean±SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.
Electrical transport quantum effects in the In0.53Ga0.47As/In0.52Al0.48As heterostructure on silicon
Resumo:
Electrical transport in a modulation doped heterostructure of In0.53Ga0.47As/In0.52Al0.48As grown on Si by molecular beam epitaxy has been measured. Quantum Hall effect and Subnikov¿De Haas oscillations were observed indicating the two¿dimensional character of electron transport. A mobility of 20¿000 cm2/V¿s was measured at 6 K for an electron sheet concentration of 1.7×1012 cm¿2. Transmission electron microscopy observations indicated a significant surface roughness and high defect density of the InGaAs/InAlAs layers to be present due to the growth on silicon. In addition, fine¿scale composition modulation present in the In0.53Ga0.47As/In0.52Al0.48As may further limit transport properties.