994 resultados para metallic ion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic boron nitride (c-BN) films were prepared by ion beam assisted deposition (IBAD) technique, and the stresses were primary estimated by measuring the frequency shifts in the infrared-absorption peaks of c-BN samples. To test the possible effects of other factors, dependencies of the c-BN transversal optical mode position on film thickness and c-BN content were investigated. Several methods for reducing the stress of c-BN films including annealing, high temperature deposition, two-stage process, and the addition of a small amount of Si were studied, in which the c-BN films with similar thickness and cubic phase content were used to evaluate the effects of the various stress relief methods. It was shown that all the methods can reduce the stress in c-BN films to various extents. Especially, the incorporation of a small amount of Si (2.3 at.%) can result in a remarkable stress relief from 8.4 to similar to 3.6 GPa whereas the c-BN content is nearly unaffected, although a slight degradation of the c-BN crystallinity is observed. The stress can be further reduced down below I GPa by combination of the addition of Si with the two-stage deposition process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmons(SPs) generated in nano metallic gratings on medium layer can greatly enhance the transmission field through the metallic gratings. The enhancement effect is achieved from lambda = 500 nm to near-infrared domain. The enhancement rate is about 110 % at the wavelength of about 6 10 nm and about 180 % at lambda = 700 nm and 740 nm where most kinds of thin film solar cells have a high spectral response. These structures should provide a promising way to increase the coupling efficiency of thin film solar cells and optical detectors of different wavelength response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different submicron ferromagnets are fabricated into GaAs and GaAs/AlGaAs superlattice through ion implantation at two different temperatures followed by thermal annealing. The structural and magnetic properties of the granular film are studied by an atomic force microscope, X-ray diffraction and alternating gradient magnetometer. By analyzing the saturation magnetization M-s, remanence M-r, coercivity H-c and remanence ratio S-q, it is confirmed that both MnGa and MnAs clusters are formed in the 350degreesC-implanted samples whereas only MnAs clusters are formed in the room-temperature implanted samples. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the technique of the ion-implanted semi-insulating GaAs wafer used for passive Q-switched mode locking in double-cladding Yb:fiber laser. The wafer was implanted with 400-keV energy, 10(16)/cm(2) dose As+ ions, and was annealed at 600degreesC for 20 min. At the pump power of 5W, we achieved output power of 200mW. The repetition rate of envelope of Q-switched mode locking is 50-kHz with a FWHM envelope of 4mus. The repetition rate of mode locked pulse train was found to be 15-MHz. This is the first report of such a kind of laser to the best of our knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase gadolinium disilicide was fabricated by a low-energy ion-beam implantation technique. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine the composition and chemical states of the film. The structure of the sample was analyzed by X-ray diffraction and the surface morphology was investigated by scan electron microscopy. Based on the measurements, only orthorhombic GdSi2 phase was found in the sample and the surface morphology was pitting. After annealing at 350degreesC for 30 min at Ar atmosphere, the full-width at half-maximum of GdSi2 became narrower. It indicates that the GdSi2 is crystallized better after annealing. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 degrees C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 mu m is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees x 18.0 degrees, respectively, resulting in 3.0dB coupling loss With a cleaved single-mode optical fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.