953 resultados para documentary film
Resumo:
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more in atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.
Resumo:
A simple procedure for obtaining a background-free backscattering spectrum of a light-mass film on a heavy-mass substrate by a normal incidence/grazing exit geometry has been described. Using this method such films can be aligned rapidly and accurately, and the impurity or defect information on the films can be obtained without need for realignment. Example is given from MeV Li-3+ analysis of a deposited film of Si on a single crystal substrate of yttria-stabilized, cubic zirconia.
Resumo:
Effect of surface structures upon ultrathin film interference fringes generated from extremely thin films or epitaxial layers grown on semiconductor wafers has been studied. Since dark regions of fringes correspond to the places where the thin films are destroyed or absent, the fringes are investigated to detect uneven surfaces with undesired structures. Therefore, surface microstructures can be detected and characterized effectively by the modification of the fringes.
Resumo:
Quantitative determinations of the hydrogen content and its profile in silicon nitride sensitive films by the method of resonant nuclear reaction have been carried out. At a deposition temperature of 825-degrees-C, hydrogen exists in an LPCVD silicon nitride sensitive film and the hydrogen content on its surface is in the range (8-16) x 10(21) cm-3, depending on the different deposition processes used. This hydrogen content is larger than the (2-3) x 10(21) cm-3 in its interior part, which is homogeneous. Meanwhile, we observe separate peaks for the chemical bonding configurations of Si-H and N-H bonds, indicated by the infrared absorption bands Si-O (1106 cm-1), N-H (1200 cm-1), Si-H-3 (2258 cm-1) and N-H-2 (3349 cm-1), respectively. The worse linear range of the ISFET is caused by the presence of oxygen on the surface of the silicon nitride sensitive film. The existence of chemical bonding configurations of Si-H, N-H and N-Si on its surfaces is favourable for its pH response.
Resumo:
The Pb-doped BiSrCaCuO superconducting films were grown by the single source mixed evaporation technique. The microbridges of dimensions 50 mum x 40 mum were fabricated by standard photolithography technologies. Si films with a thickness of 2500 angstrom were deposited on the microbridge area surfaces of BiPbSrCaCuO superconducting films by rf-magnetron sputtering. A greatly lowered zero resistance temperature of the microbridge area of the BiPbSrCaCuO film after Si sputtering was found. A non-linear effect of the current-voltage (I-V) characteristics at 78 K was shown. The high-frequency capacitance-voltage (C-V) curve of this structure at 78 K was symmetrical with the maximum capacitance at V = 0, and the capacitance decreased with increasing applied bias voltage. Afl experimental results are discussed.
Resumo:
Direct current SQUIDs (superconducting quantum interference devices) have been successfully fabricated by using a Pb-doped BiSrCaCuO superconducting thin film made by mixed evaporation of a single source composed of related components with a resistance heater. The dc SQUID comprises a square washer with a small hole. These SQUIDs show perfectly periodic voltage-flux characteristics without magnetic shield, that is, typically, the flux noise and energy resolution at a frequency range from dc to 1 Hz and at 78 K being 1.7 x 10(-3) PHI-0/ square-root Hz and 3.6 x 10(-26) J/Hz, respectively. Meanwhile, we have found out that one of the SQUIDs still was able to operate on flux-locked mode without bias currents and showed voltage-flux second harmonic characteristics. This phenomenon is not well understood, but it may be related to I-V (current-voltage) characteristics of the dc SQUID.
Resumo:
The dependence of the inversion-layer thickness on the film thickness in thin-film SOI structure is analyzed theoretically by using computer simulation. A new concept and parameter, the critical thickness of thin film all-bulk inversion, is introduced for the design of thin-film MOS/SOI devices. It is necessary to select the film thickness T(s1) close to the all-bulk strong inversion critical thickness in order to get high-speed and high-power operation of ultra-thin film MOS/SOI devices.
Resumo:
We report on an aluminum oxynitride (AlON) film which was successfully made using the reactiver r.f. sputtering method in an N2-O2 mixture. The fabrication process, atomic components, breakdown field and refractive index of the AlON film are shown in detail. The AlON film is a new polyfilm combining the good properties of Al2O3 and AlN, and it is very interesting with regard to optoelectronic devices and integrated optic circuits.