970 resultados para acoustically excited flame
Resumo:
The reduction in natural frequencies,however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamentalmodes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an endbearing pile, modelled as an axial rod and a simply supported plate as a continuum dynamic system. A discrete structure, like a building frame is solved for damage using Eigen-sensitivity derived by a computationalmodel. Lastly, neural network based damage identification is also demonstrated for a simply supported bridge beam, where the known-pairs of damage-frequency vector is used to train a neural network. The performance of these methods under the influence of measurement error is outlined. It is hoped that the developed method could be integrated in a typical infra-structural management program, such that magnitudes of damage and their positions can be obtained using acquired natural frequencies, synthesized from the excited/ambient vibration signatures.
Resumo:
The photochemical and redox properties of two newly synthesized tetrahydroquinoxaline-based squaraine dyes (SQ) are investigated Using femto- and nanosecond laser flash photolysis, pulse radiolysis, and cyclic voltammetry. In acetonitrile and dichloromethane, these squaraines exist its monomers in the zwitterionic form (lambda(max) approximate to 715 nm, epsilon(max) approximate to 1.66 x 10(5) M-1 cm(-1) in acetonitrile). Their excited sin-let states ((1)SQ*) exhibit a broad absorption hand at 480 nm, with singlet lifetimes of 44 and 123 ps for the two dyes. Both squaraines exhibit poor intersystem crossing efficiency (Phi(ISC) < 0.001). Their excited triplet states ((3)SQ*), however, Ire efficiently generated by triplet-triplet energy transfer Using triplet excited 9,10-dibromoanthracene. The excited triplet states of the squaraines dyes exhibit it broad absorption hand at ca. 560 nm (epsilon(triplet) approximate to 4.2 x 10(4) M-1 cm(-1)) and undergo deactivation via triplet-triplet annihilation and ground-state quenching processes. The oxidized forms of the investigated squaraines (SQ(center dot+)) exhibit absorption maxima at 510 and 610 nm.
Resumo:
Spectral properties of Nd3+ and Dy3+ ions in different phosphate glasses were studied and several spectroscopic parameters were reported. Covalency of rare-earth-oxygen bond was studied in these phosphate glass matrices with the variation of modifier in host glass matrix Using Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), radiative transition probabilities (A) and radiative lifetimes (tau(R)) of certain excited states of Nd3+ and Dy3+ ions are estimated in these glass matrices. From the magnitudes of branching ratios (beta(R)) and integrated absorption cross-sections (Sigma), certain transitions of both the ions are identified for laser excitation. From the emission spectra, peak stimulated emission cross-sections (sigma(P)) are evaluated for the emission transitions observed in all these phosphate glass matrices for both Nd3+ and Dy3+ ions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have measured hyperfine structure in the first-excited P state (D lines) of all the naturally occurring alkali atoms. We use high-resolution laser spectroscopy to resolve hyperfine transitions, and measure intervals by locking the frequency shift produced by an acousto-optic modulator to the difference between two transitions. In most cases, the hyperfine coupling constants derived from our measurements improve previous values significantly.
Resumo:
The superconducting (or cryogenic) gravimeter (SG) is based on the levitation of a superconducting sphere in a stable magnetic field created by current in superconducting coils. Depending on frequency, it is capable of detecting gravity variations as small as 10-11ms-2. For a single event, the detection threshold is higher, conservatively about 10-9 ms-2. Due to its high sensitivity and low drift rate, the SG is eminently suitable for the study of geodynamical phenomena through their gravity signatures. I present investigations of Earth dynamics with the superconducting gravimeter GWR T020 at Metsähovi from 1994 to 2005. The history and key technical details of the installation are given. The data processing methods and the development of the local tidal model at Metsähovi are presented. The T020 is a part of the worldwide GGP (Global Geodynamics Project) network, which consist of 20 working station. The data of the T020 and of other participating SGs are available to the scientific community. The SG T020 have used as a long-period seismometer to study microseismicity and the Earth s free oscillation. The annual variation, spectral distribution, amplitude and the sources of microseism at Metsähovi were presented. Free oscillations excited by three large earthquakes were analyzed: the spectra, attenuation and rotational splitting of the modes. The lowest modes of all different oscillation types are studied, i.e. the radial mode 0S0, the "football mode" 0S2, and the toroidal mode 0T2. The very low level (0.01 nms-1) incessant excitation of the Earth s free oscillation was detected with the T020. The recovery of global and regional variations in gravity with the SG requires the modelling of local gravity effects. The most important of them is hydrology. The variation in the groundwater level at Metsähovi as measured in a borehole in the fractured bedrock correlates significantly (0.79) with gravity. The influence of local precipitation, soil moisture and snow cover are detectable in the gravity record. The gravity effect of the variation in atmospheric mass and that of the non-tidal loading by the Baltic Sea were investigated together, as sea level and air pressure are correlated. Using Green s functions it was calculated that a 1 metre uniform layer of water in the Baltic Sea increases the gravity at Metsähovi by 31 nms-2 and the vertical deformation is -11 mm. The regression coefficient for sea level is 27 nms-2m-1, which is 87% of the uniform model. These studies are associated with temporal height variations using the GPS data of Metsähovi permanent station. Results of long time series at Metsähovi demonstrated high quality of data and correctly carried out offsets and drift corrections. The superconducting gravimeter T020 has been proved to be an eminent and versatile tool in studies of the Earth dynamics.
Resumo:
Several excited states of Ds and Bs mesons have been discovered in the last six years: BaBar, Cleo and Belle discovered the very narrow states D(s0)*(2317)+- and D(s1)(2460)+- in 2003, and CDF and DO Collaborations reported the observation of two narrow Bs resonances, B(s1)(5830)0 and B*(s2)(5840)0 in 2007. To keep up with experiment, meson excited states should be studied from the theoretical aspect as well. The theory that describes the interaction between quarks and gluons is quantum chromodynamics (QCD). In this thesis the properties of the meson states are studied using the discretized version of the theory - lattice QCD. This allows us to perform QCD calculations from first principles, and "measure" not just energies but also the radial distributions of the states on the lattice. This gives valuable theoretical information on the excited states, as we can extract the energy spectrum of a static-light meson up to D wave states (states with orbital angular momentum L=2). We are thus able to predict where some of the excited meson states should lie. We also pay special attention to the order of the states, to detect possible inverted spin multiplets in the meson spectrum, as predicted by H. Schnitzer in 1978. This inversion is connected to the confining potential of the strong interaction. The lattice simulations can also help us understand the strong interaction better, as the lattice data can be treated as "experimental" data and used in testing potential models. In this thesis an attempt is made to explain the energies and radial distributions in terms of a potential model based on a one-body Dirac equation. The aim is to get more information about the nature of the confining potential, as well as to test how well the one-gluon exchange potential explains the short range part of the interaction.
Resumo:
We report magnetic trapping of Yb in the excited P-3(2) state. This state, with a lifetime of 15 s, could play an important role in studies ranging from optical clocks and quantum computation to the search for a permanent electric dipole moment. Yb atoms are first cooled and trapped in the ground state in a 399-nm magneto-optic trap. The cold atoms are then pumped into the excited state by driving the S-1(0) -> P-3(1) -> S-3(1) transition. Atoms in the P-3(2) state are magnetically trapped in a spherical quadrupole field with an axial gradient of 110 G/cm. We trap up to 10(6) atoms with a lifetime of 1.5 s.
Resumo:
A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethy1-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by H-1 and C-13 NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess lowexcitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfercharacter that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules, Our theoretical values agree well with experimental results.
Resumo:
In this paper, a new strategy for scaling burners based on "mild combustion" is evolved and adopted to scaling a burner from 3 to a 150 kW burner at a high heat release Late of 5 MW/m(3) Existing scaling methods (constant velocity, constant residence time, and Cole's procedure [Proc. Combust. Inst. 28 (2000) 1297]) are found to be inadequate for mild combustion burners. Constant velocity approach leads to reduced heat release rates at large sizes and constant residence time approach in unacceptable levels of pressure drop across the system. To achieve mild combustion at high heat release rates at all scales, a modified approach with high recirculation is adopted in the present studies. Major geometrical dimensions are scaled as D similar to Q(1/3) with an air injection velocity of similar to 100 m/s (Delta p similar to 600 mm water gauge). Using CFD support, the position of air injection holes is selected to enhance the recirculation rates. The precise role of secondary air is to increase the recirculation rates and burn LIP the residual CO in the downstream. Measurements of temperature and oxidizer concentrations inside 3 kW, 150 kW burner and a jet flame are used to distinguish the combustion process in these burners. The burner can be used for a wide range of fuels from LPG to producer gas as extremes. Up to 8 dB of noise level reduction is observed in comparison to the conventional combustion mode. Exhaust NO emissions below 26 and 3 ppm and temperatures 1710 and 1520 K were measured for LPG and producer gas when the burner is operated at stoichiometry. (c) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
This paper deals with the manifestations of conical intersections (CIs), unequivocal spectroscopic signatures of which are still elusive, in the resonance Raman intensities. In particular, the results of our calculations on the `two state-two vibrational mode' and the `two state-three vibrational mode' models are presented. The models comprise two excited states of different spatial symmetry, one bright and one dark, which are coupled by a nontotally symmetric mode while the energy gap between them is tuned by one/two totally symmetric modes. Time dependent theory for vibronically coupled states is employed for the calculation and analysis of Raman excitation profiles (REPs). The manifestation of intersections in REPs is studied by extensive modelm calculations and the results of two specific models are presented. Themfeasibility of using REPs to probe the role of CIs in polyatomic systems is ascertained by multimode calculations on two polyatomic systems viz., pyrazine and trans-azobenzene. The study also notes the importance of the pump excitation wavelength dependence in a femtosecond time-resolved experiment probing the intersection-induced nonadiabatic dynamics. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The binding of winged bean basic agglutinin (WBA I) to 4-methylumbelliferyl (MeUmb) galactosides was examined by extrinsic fluorescence titration and stopped-flow spectrofluorimetry. Upon binding to WBA I, MeUmb alpha-galactosides show quenching in fluorescence intensity, decrease in UV absorbance with a concomitant blue shift, and decrease in fluorescence excited-state lifetimes. However, their beta-analogues show enhancement in fluorescence intensity, increase in UV absorbance with a red shift, and an increase in fluorescence excited-state lifetimes. This implies that the umbelliferyl groups of alpha- and beta-galactosides experience non-polar and polar microenvironments, respectively, upon binding to WBA I. Replacement of the anomeric hydroxyl group of galactose by 4-methylumbelliferyl moiety increases the affinity of resulting saccharides. Substitution of C-2 hydroxyl of galactose by an acetamido group leads to increased affinity due to a favorable entropy change. This suggests that acetamido group of MeUmb-alpha/beta-GalNAc binds to a relatively non-polar subsite of WBA I. Most interestingly, this substitution also reduces the association rate constants dramatically. Inspection of the activation parameters reveals that the enthalpy of activation is the limiting factor for the differences in the forward rate constants for these saccharides and the entropic contribution to the activation energy is small
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
In this paper the problem of ignition and extinction has been formulated for the flow of a compressible fluid with Prandtl and Schmidt numbers taken as unity. In particular, the problems of (i) a jet impinging on a wall of combustible material and (ii) the opposed jet diffusion flame have been studied. In the wall jet case, three approximations in the momentum equation namely, (i) potential flow, (ii) viscous flow, (ii) viscous incompressible with k = 1 and (iii) Lees' approximation (taking pressure gradient terms zero) are studied. It is shown that the predictions of the mass flow rates at extinction are not very sensitive to the approximations made in the momentum equation. The effects of varying the wall temperature in the case (i) and the jet temperature in the case (ii) on the extinction speeds have been studied. The effects of varying the activation energy and the free stream oxidant concentration in case (ii), have also been investigated.
Resumo:
The para orientation by the carbonyl groups in the bromination of phenanthrenequinone derivatives has been explained on the basis of an excited state resulting from thermal excitation of the quinone and/or from a n→π* transition of the nonbonding electrons of the oxygen atoms. A general preparative method for the syntheses of 3-bromophenanthrenequinone derivatives has been developed. The structure of 2-nitro-6-bromophenanthrenequinone has been established by degradation. Synthesis of 2-nitro-6-bromofluorenone is described. Direct bromination of phenanthrenequinone to 2-bromo and 2,7-dibromo derivatives has also been described.
Resumo:
Earlier work has suggested that large-scale dynamos can reach and maintain equipartition field strengths on a dynamical time scale only if magnetic helicity of the fluctuating field can be shed from the domain through open boundaries. To test this scenario in convection-driven dynamos by comparing results for open and closed boundary conditions. Three-dimensional numerical simulations of turbulent compressible convection with shear and rotation are used to study the effects of boundary conditions on the excitation and saturation level of large-scale dynamos. Open (vertical field) and closed (perfect conductor) boundary conditions are used for the magnetic field. The contours of shear are vertical, crossing the outer surface, and are thus ideally suited for driving a shear-induced magnetic helicity flux. We find that for given shear and rotation rate, the growth rate of the magnetic field is larger if open boundary conditions are used. The growth rate first increases for small magnetic Reynolds number, Rm, but then levels off at an approximately constant value for intermediate values of Rm. For large enough Rm, a small-scale dynamo is excited and the growth rate in this regime increases proportional to Rm^(1/2). In the nonlinear regime, the saturation level of the energy of the mean magnetic field is independent of Rm when open boundaries are used. In the case of perfect conductor boundaries, the saturation level first increases as a function of Rm, but then decreases proportional to Rm^(-1) for Rm > 30, indicative of catastrophic quenching. These results suggest that the shear-induced magnetic helicity flux is efficient in alleviating catastrophic quenching when open boundaries are used. The horizontally averaged mean field is still weakly decreasing as a function of Rm even for open boundaries.