995 resultados para XRD
Resumo:
Diluted-magnetic GaN:Sm:Eu films have been fabricated by co-implantation of Sm and Eu ions into c-plane (0001) GaN films and a subsequent annealing process. The structural, morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The XRD and AFM analyses show that the annealing process can effectively recover the crystalline degradation caused by implantation. Compared with GaN:Sm films, more defects have been introduced into GaN:Sm:Eu films due to the Eu implantation process. According to the SQUID analysis, GaN:Sm:Eu films exhibit clear room-temperature ferromagnetism. Moreover, GaN:Sm:Eu films show a lower saturation magnetization (Ms) than GaN:Sm films.
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
The TiO2-supported zeolite with core/shell heterostructure was fabricated by coating aluminosilicate zeolite (ASZ) on the TiO2 inoculating seed via in situ hydrothermal synthesis. The catalysts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen physisorption (BET), and Fourier transform infrared spectroscopy (FT-IR). The surface acidity of the catalysts was measured by pyridine-TPD method. The catalytic performance of the catalysts for ethanol dehydration to ethylene was also investigated. The results show that the TiO2-supported zeolite composite catalyst with core/shell heterostructure exhibits prominent conversion efficiency for ethanol dehydration to ethylene.
Resumo:
The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.
Resumo:
The effects of five metal catalysts (K, Na, Ca, Mg, and Fe) on CO2 gasification reactivity of fir char were studied using thermal gravimetric analysis. The degree of carbonization, crystal structure and morphology of char samples was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The CO2 gasification reactivity of fir char was improved through the addition of metal catalysts, in the order K>Na>Ca>Fe>Mg. XRD analysis indicated that Na and Ca improved the formation of crystal structure, and that Mg enhanced the degree of carbon structure ordering. SEM analysis showed that spotted activation centers were distributed on the surface of char samples impregnated with catalysts. Moreover, a loose flake structure was observed on the surface of both K-char and Na-char. Finally, the kinetic parameters of CO2 gasification of char samples were calculated mathematically.
Resumo:
MoNi/gamma-Al2O3 catalysts were prepared by the impregnation method. The catalyst samples were characterized by XRD and TPR. The effects of Mo promoter content and the catalyst reducing temperature Oil hydrotreatment activity of the catalyst were studied under 200 degrees C and 3 MPa hydrogen pressure using acetic acid as the model compound. The XRD results indicate that the addition of Mo promoter is beneficial to the uniformity of nickel species on the catalyst and decreases the Interaction between nickel species and the support Which results in the decrease the of NiAl2O4 spinel formation. The addition of Mo promoter also decreases the reducing temperature of the catalyst. After the catalyst of 0.06 MoNi/gamma-Al2O3 being reduced Under the atmosphere of H-2/N-2(5/95, V/V), nickel oxide was reduced to Ni-0. The reaction was promoted obviously upon the addition of the MoNi/gamma-Al2O3 catalyst reduced at 600 degrees C. The Mo-modified Ni/gamma-Al2O3 catalyst reduced at 600 degrees C displayed the highest activity during the reaction, the conversion of acetic acid reached the highest point of 33.2%. The products included ethyl acetate and water.
Resumo:
Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.
Resumo:
Autothermal reforming of methanol for hydrogen production was investigated over ZnO-ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2-ZrO2)CeO2-ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO-ZnCr2O4/CeO2-ZrO2 and ZnO-ZnCr2O4 catalysts were characterized by XRD, TEM, H-2-TPR and XPS. The results show that CeO2-ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.
Resumo:
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.
Resumo:
Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.
Resumo:
ZnO complex 3D nano-structures have been self-organized on Al2O3 (0 0 0 1) substrate by laser molecular beam epitaxy (L-MBE). It is shown by AFM morphology that the structure is composed of ID quantum dot chains (QDCs) and larger nano-islands at the nodes of QDCs. The formation mechanism of the nano-structure is also investigated. XRD results indicate that the nano-structure is highly c-axis oriented, with the aligned in-plane oriented domains. Time-integrated photoluminescence (TIPL) of the sample shows obvious blue-shift and broadening of the near band-edge (NBE) emission at room temperature, which are related to the quantum confinement effects. Time-resolved PL (TRPL) result shows bi-exponential decay behavior of ZnO QDCs, with a fast decay time of 38.21 ps and a low decay time of 138.19ps, respectively, which is considered to be originated from the interdot coupling made by coherent emission and reabsorption of the photons in QDCs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Large-scale uniform Ag microtubes with high length diameter ratios have been first successfully synthesized by a facile approach, using low-cost super fine glass fibers as templates. The samples were characterized by SEM and XRD. The investigations showed that calcining or adding of PEG-1000 and alcohol could greatly improve the mechanical strength of the sample. Especially the products exhibited favorable catalytic properties during the degradation of Rhodamine B by NaBH4. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The novel hexagon SnO2 nanosheets are successfully synthesized in ethanol/water solution by hydrothermal process. The samples are characterized by X-ray diffraction (XRD), infrared ray (IR) and transmission electron microscopy (TEM). By changing the reaction conditions, the size and the morphology can be controlled. Comparison experiments show that when the temperature increased from 140 degrees C to 180 degrees C, the edge length of the hexagon nanoparticles increases from 300-450 nm to 700-900 nm. On the other hand, by adjusting the ratios of water to ethanol from 2 to 0.5, SnO2 nanoparticles with different morphologies of triangle and sphere are obtained. When the concentration of NaOH is increased from 0.15 M to 0.30 M, a hollow ring structure can be obtained. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
近年来随着纳米材料科学、功能材料科学和超分子材料科学等学科的交叉渗透和迅猛发展,设计合成新型的多金属氧酸盐超分子变色材料和研究其结构、性质及变色机理具有重要的理论意义和应用价值。 本文以光致变色材料和热致变色材料的合成、结构与性质的研究为主线,通过水热法和溶液法制备了一系列含氮有机分子多金属氧酸盐的超分子化合物。解析了它们的晶体结构并研究了它们的光致变色与热致变色性质。采用低温固相反应法制备了具有变色特性的纳米氨基酸多金属氧酸盐。主要研究结果如下: 利用水热合成法制备了乙二胺三钼酸盐晶体,发现乙二胺三钼酸盐不仅具有光致变色性质,而且具有热致变色性质。在 365 nm 的紫外光照射下乙二胺三钼酸盐的光致变色样品呈红棕色,而热致变色样品在 180~250 ℃ 之间为蓝黑色。紫外-可见漫反射光谱被用于表征它们的变色性质。FT-IR 和 XRD 的结果确定着色后的样品其晶体结构和钼氧阴离子的骨架不改变,只是发生了轻微的畸变。一系列的光致变色样品和热致变色样品的ESR谱分别保持着各自特征,但二者有明显的差别,这反映出该化合物的热致变色机理与光致变色机理可能有所不同。这一现象是被首次发现和提出的。 利用水热法成功地合成了1, 6-己二胺三钼酸盐及四钼酸盐超分子化合物。单晶X-射线揭示出1, 6-己二胺三钼酸盐是一个新的超分子化合物,在它的晶体结构中,平行于 a 轴的新的无限链[Mo3O10]2–是由扭曲的MoO6八面体通过共边和共角连接的。质子化的己二胺阳离子占据着由无限链[Mo3O10]2–形成的隧道,它们之间以较强的氢键相互作用,形成了一维网络结构。我们发现这两种晶体均展示了新颖的光致变色与热致变色性质。我们利用FTIR、XRD、ESR和XPS对它们的变色性质进行了研究与探索。 选用4, 4'-联吡啶这种线状双基刚性配体, 利用水热法合成了两种4, 4'-联吡啶多金属钼酸盐晶体:一种是化学式为C10H12Mo7N2O23化合物, 另一种是化学式为C10H12Mo3N2O11化合物。测定了前者的晶体结构。两种晶体同样地展示了光致变色和热致变色性质,但后一种化合物有着明显比前一种化合物敏感的光热变色性质。ESR谱揭示出在UV光照射和加热的条件下,两个化合物中的Mo (Ⅵ) 原子均能被还原成Mo(Ⅴ)原子,但仅后一种化合物通过光热着色后有自由基产生。这是否是造成二者光热变色性质差别的原因,有待于今后更深入的研究和探索。 我们利用水溶液法成功地合成了氨基酸多金属氧酸盐晶体。晶体结构分析表明:组氨酸硅钨酸盐基本结构单元由一个[SiW12O40]4–多阴离子和两个质子化的[H2His]2+有机阳离子靠两个氢键相互作用组成。这个化合物展示了一个新颖的三维网络结构。脯氨酸硅钨酸盐的晶体结构正在解析中。在光照或加热后,这两个化合物的颜色由白色变为蓝色。我们利用FTIR、XRD、Raman和ESR研究了它们的光热变色性质。 将低温固相化学反应制备纳米材料的方法应用于纳米氨基酸多金属氧酸盐的制备,选取Silverton型多酸与多种氨基酸反应合成了系列纳米氨基酸-杂多酸电荷转移化合物。苏氨酸((HThr)7PMo12O42•4H2O) 磷钼多酸盐为形状不很规则的二维纳米片,酪氨酸磷钼多酸盐((HTyr)7PMo12O42•5H2O) 为一维纳米棒,丝氨酸磷钼多酸盐((HSer)7PMo12O42•5H2O)和谷氨酸磷钼多酸盐((HGlu)7PMo12O42•4H2O)为零维纳米粒子。有机给体氨基酸的结构对 Silverton 结构杂多化合物的形成起模板剂的作用,从而导致形貌的差异。在紫外光照射下,这些化合物会从白色变成蓝色,且对光比较敏感。
Resumo:
控制电位电解型即电流型气体传感器由于具有检测气体种类多、浓度范围宽、体积小、价格低、测量精度高、可用于现场直接检测等优点,在环境监测与安全生产等领域中得到了广泛应用。本文论述了纳米级铂、碳纳米管负载铂及铂铁催化剂的合成方法,并对其进行了物理化学表征和电化学研究,主要结果如下: 采用柠檬酸钠还原的方法,合成了纳米级铂催化剂。TEM和XRD测试表明,该球形多晶铂的粒径为2-5nm。用此种铂催化剂制备了离子交换膜电极复合体,并组装了全固态电流型氧传感器;在对低浓度氧气进行测试时,具有高的灵敏度、较短的响应时间、较低的底电流和噪声,且响应信号与氧气的浓度呈良好的线性关系。 1.利用空气氧化和硝酸相结合对多壁碳纳米管进行了纯化,并利用1:1的H2SO4-HNO3混酸使其表面羧基化,TEM和CV测试表明多壁碳纳米管达到了纯化和表面官能团化的目的。 2.利用喷雾冷却法制备了多壁碳纳米管负载的铂及铂铁合金纳米级催化剂复合体,并利用TEM、EDS、XRD、ICP等进行了表征;在循环伏安扫描中,铂铁合金催化剂呈现较高的比表面积。将多壁碳纳米管负载的铂及铂铁合金纳米级催化剂应用于C1有机小分子的电化学氧化研究中发现,铂铁合金催化剂具有较高的催化活性.