976 resultados para True Time
Resumo:
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.
Resumo:
We are addressing the problem of jointly using multiple noisy speech patterns for automatic speech recognition (ASR), given that they come from the same class. If the user utters a word K times, the ASR system should try to use the information content in all the K patterns of the word simultaneously and improve its speech recognition accuracy compared to that of the single pattern based speech recognition. T address this problem, recently we proposed a Multi Pattern Dynamic Time Warping (MPDTW) algorithm to align the K patterns by finding the least distortion path between them. A Constrained Multi Pattern Viterbi algorithm was used on this aligned path for isolated word recognition (IWR). In this paper, we explore the possibility of using only the MPDTW algorithm for IWR. We also study the properties of the MPDTW algorithm. We show that using only 2 noisy test patterns (10 percent burst noise at -5 dB SNR) reduces the noisy speech recognition error rate by 37.66 percent when compared to the single pattern recognition using the Dynamic Time Warping algorithm.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
Instantaneous natural mortality rates and a nonparametric hunting mortality function are estimated from a multiple-year tagging experiment with arbitrary, time-dependent fishing or hunting mortality. Our theory allows animals to be tagged over a range of times in each year, and to take time to mix into the population. Animals are recovered by hunting or fishing, and death events from natural causes occur but are not observed. We combine a long-standing approach based on yearly totals, described by Brownie et al. (1985, Statistical Inference from Band Recovery Data: A Handbook, Second edition, United States Fish and Wildlife Service, Washington, Resource Publication, 156), with an exact-time-of-recovery approach originated by Hearn, Sandland and Hampton (1987, Journal du Conseil International pour l'Exploration de la Mer, 43, 107-117), who modeled times at liberty without regard to time of tagging. Our model allows for exact times of release and recovery, incomplete reporting of recoveries, and potential tag shedding. We apply our methods to data on the heavily exploited southern bluefin tuna (Thunnus maccoyii).
Resumo:
The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.
Resumo:
APSIM-ORYZA is a new functionality developed in the APSIM framework to simulate rice production while addressing management issues such as fertilisation and transplanting, which are particularly important in Korean agriculture. To validate the model for Korean rice varieties and field conditions, the measured yields and flowering times from three field experiments conducted by the Gyeonggi Agricultural Research and Extension Services (GARES) in Korea were compared against the simulated outputs for different management practices and rice varieties. Simulated yields of early-, mid- and mid-to-late-maturing varieties of rice grown in a continuous rice cropping system from 1997 to 2004 showed close agreement with the measured data. Similar results were also found for yields simulated under seven levels of nitrogen application. When different transplanting times were modelled, simulated flowering times ranged from within 3 days of the measured values for the early-maturing varieties, to up to 9 days after the measured dates for the mid- and especially mid-to-late-maturing varieties. This was associated with highly variable simulated yields which correlated poorly with the measured data. This suggests the need to accurately calibrate the photoperiod sensitivity parameters of the model for the photoperiod-sensitive rice varieties in Korea.
Resumo:
Studying the continuity and underlying mechanisms of temperament change from early childhood through adulthood is clinically and theoretically relevant. Knowledge of the continuity and change of temperament from infancy onwards, especially as perceived by both parents is, however, still scanty. Only in recent years have researchers become aware that personality, long considered as stable in adulthood, may also change. Further, studies that focus on the transactional change of child temperament and parental personality also seem to be lacking, as are studies focusing on transactions between child temperament and more transient parental characteristics, like parental stress. Therefore, this longitudinal study examined the degree of continuity of temperament over five years from the infant s age of six months to the child s age of five and a half years, as perceived by both biological parents, and also investigated the bidirectional effects between child temperament and parents personality traits and overall stress experienced during that time. First, moderate to high levels of continuity of temperament from infancy to middle childhood were shown, depicting the developmental links between affectively positive and well-adjusted temperament characteristics, and between characteristics of early and later negative affectivity. The continuity of temperament was quantitatively and qualitatively similar in both parents ratings. The findings also demonstrate that infant and childhood temperament characteristics cluster to form stable temperament types that resemble personality types shown in child and adult personality studies. Second, the parental personality traits of extraversion and neuroticism were shown to be highly stable over five years, but evidence of change in relation to parents views of their child s temperament was also shown: an infant s higher positive affectivity predicted an increase in parental extraversion, while the infant s higher activity level predicted a decrease in parental neuroticism over five years. Furthermore, initially higher parental extraversion predicted higher ratings of the child s effortful control, while initially higher parental neuroticism predicted the child s higher negative affectivity. In terms of changes in parental stress, the infant s higher activity level predicted a decrease in maternal overall stress, while initially higher maternal stress predicted a higher level of child negative affectivity in middle childhood. Together, the results demonstrate that the mother- and father-rated temperament of the child shows continuity during the early years of life, but also support the view that the development of these characteristics is sensitive to important contextual factors such as parental personality and overall stress. While parental personality and experienced stress were shown to have an effect on the child s developing temperament, the reverse was also true: the parents own personality traits and perceived stress seemed to be highly stable, but also susceptible to their experiences of their child s temperament.
Resumo:
The aim of the present study was to advance the methodology and use of time series analysis to quantify dynamic structures in psychophysiological processes and thereby to produce information on spontaneously coupled physiological responses and their behavioral and experiential correlates. Series of analyses using both simulated and empirical cardiac (IBI), electrodermal (EDA), and facial electromyographic (EMG) data indicated that, despite potential autocorrelated structures, smoothing increased the reliability of detecting response coupling from an interindividual distribution of intraindividual measures and that especially the measures of covariance produced accurate information on the extent of coupled responses. This methodology was applied to analyze spontaneously coupled IBI, EDA, and facial EMG responses and vagal activity in their relation to emotional experience and personality characteristics in a group of middle-aged men (n = 37) during the administration of the Rorschach testing protocol. The results revealed new characteristics in the relationship between phasic end-organ synchronization and vagal activity, on the one hand, and individual differences in emotional adjustment to novel situations on the other. Specifically, it appeared that the vagal system is intimately related to emotional and social responsivity. It was also found that the lack of spontaneously synchronized responses is related to decreased energetic arousal (e.g., depression, mood). These findings indicate that the present process analysis approach has many advantages for use in both experimental and applied research, and that it is a useful new paradigm in psychophysiological research. Keywords: Autonomic Nervous System; Emotion; Facial Electromyography; Individual Differences; Spontaneous Responses; Time Series Analysis; Vagal System
Resumo:
The four studies presented in this dissertation were designed to examine the influence of socially desirable responding (SDR) on personality research outcomes. The assessment of personality relies heavily on the use of self-report questionnaires. Their validity could be threatened by people being dishonest in their self-descriptions and ascribing more desirable traits to themselves than would be warranted by their behaviour. Scales designed to detect SDR have been around for half a century, but their status continues to be debated. Paulhus (1991) Balanced Inventory of Desirable Responding (BIDR) is perhaps the most prominent of the scales developed to distinguish between those individuals who have distorted their responses and those who have not. The first two studies included in this dissertation mostly deal with the properties of the BIDR. The other two studies are less focused on SDR scales and investigate, more generally, the potential effects of SDR on two phenomena that are of central interest to the general personality discourse personality stability over time and volunteering as participants in psychological research. The data of Studies I and II showed that Paulhus BIDR scales, designed to be indicators of SDR, are not pure measures both the communion management and self-deceptive enhancement scales are, at once, measures of response bias and measures of more substantive individual differences in behaviour. The data further suggested that the communion management and self-deceptive enhancement scales of the BIDR are somewhat accurate measures of communal and agentic bias, respectively. No evidence for a suppressor model of SDR, and only weak evidence for a moderator model, was found in those studies. Concerning research on personality stability, some data in Study I suggested that SDR may add reliable and common variance to a personality questionnaire administered at two different points in time, thus artificially inflating the test-retest correlation of that questionnaire. Furthermore, Study III demonstrated that the maturity-stability hypothesis may be in part, but not entirely, a product of SDR. Study IV suggested that some of the observed personality differences between research volunteers and nonvolunteers may be due to heightened SDR of volunteers. However, those personality differences were by no means exclusively attributable to differences in SDR. In sum, the work presented in this thesis reveals some ambiguity regarding the effects of SDR on personality research, as is true of much of the previous research on SDR. Clear-cut conclusions are difficult to reach, as the data were neither fully consistent with the view that SDR can be ignored, nor with the view that SDR needs to be controlled in some way. The struggle to understand the influence of SDR on personality research continues.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Resumo:
The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.
Resumo:
Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.
Influence of Solvent on Photoinduced Electron-Transfer Reaction: Time-Resolved Resonance Raman Study
Resumo:
Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.
Resumo:
For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)kslashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.