981 resultados para Stochastically constrained problems
Resumo:
In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
Given an algorithm A for solving some mathematical problem based on the iterative solution of simpler subproblems, an outer trust-region (OTR) modification of A is the result of adding a trust-region constraint to each subproblem. The trust-region size is adaptively updated according to the behavior of crucial variables. The new subproblems should not be more complex than the original ones, and the convergence properties of the OTR algorithm should be the same as those of Algorithm A. In the present work, the OTR approach is exploited in connection with the ""greediness phenomenon"" of nonlinear programming. Convergence results for an OTR version of an augmented Lagrangian method for nonconvex constrained optimization are proved, and numerical experiments are presented.
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let M = (V, E, A) be a mixed graph with vertex set V, edge set E and arc set A. A cycle cover of M is a family C = {C(1), ... , C(k)} of cycles of M such that each edge/arc of M belongs to at least one cycle in C. The weight of C is Sigma(k)(i=1) vertical bar C(i)vertical bar. The minimum cycle cover problem is the following: given a strongly connected mixed graph M without bridges, find a cycle cover of M with weight as small as possible. The Chinese postman problem is: given a strongly connected mixed graph M, find a minimum length closed walk using all edges and arcs of M. These problems are NP-hard. We show that they can be solved in polynomial time if M has bounded tree-width. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
The potential changes to the territory of the Russian Arctic open up unique possibilities for the development of tourism. More favourable transport opportunities along the Northern Sea Route (NSR) create opportunities for tourism development based on the utilisation of the extensive areas of sea shores and river basins. A major challenge for the Russian Arctic sea and river ports is their strong cargo transport orientation originated by natural resource extraction industries. A careful assessment of the prospects of current and future tourism development is presented here based on the development of regions located along the shores of the Arctic ocean (including Murmansk and Arkhangelsk oblast, Nenets Autonomous okrug (AO), Yamal-Nenets AO, Taymyr AO, Republic of Sakha, Chykotsky AO). An evaluation of the present development of tourism in maritime cities suggests that a considerable qualitative and quantitative increase of tourism activities organised by domestic tourism firms is made virtually impossible. There are several factors contributing to this. The previously established Soviet system of state support for the investments into the port facilities as well as the sea fleet were not effectively replaced by creation of new structures. The necessary investments for reconstruction could be contributed by the federal government but the priorities are not set towards the increased passenger transportation. Having in mind, increased environmental pressures in this highly sensitive area it is especially vital to establish a well-functioning monitoring and rescue system in the situation of ever increasing risks which come not only from the increased transports along the NSR, but also from the exploitation of the offshore oil and gas reserves in the Arctic seas. The capacity and knowledge established in Nordic countries (Norway, Finland) concerning cruise tourism should not be underestimated and the already functioning cooperation in Barents Region should expand towards this particular segment of the tourism industry. The current stage of economic development in Russia makes it clear that tourism development is not able to compete with the well-needed increase in the cargo transportation, which means that Russia’s fleet is going to be utilised by other industries. However, opening up this area to both local and international visitors could contribute to the economic prosperity of these remote areas and if carefully managed could sustain already existing maritime cities along the shores of the Arctic Ocean.
Resumo:
Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones.
Resumo:
Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region.
Resumo:
Combinatorial optimization problems, are one of the most important types of problems in operational research. Heuristic and metaheuristics algorithms are widely applied to find a good solution. However, a common problem is that these algorithms do not guarantee that the solution will coincide with the optimum and, hence, many solutions to real world OR-problems are afflicted with an uncertainty about the quality of the solution. The main aim of this thesis is to investigate the usability of statistical bounds to evaluate the quality of heuristic solutions applied to large combinatorial problems. The contributions of this thesis are both methodological and empirical. From a methodological point of view, the usefulness of statistical bounds on p-median problems is thoroughly investigated. The statistical bounds have good performance in providing informative quality assessment under appropriate parameter settings. Also, they outperform the commonly used Lagrangian bounds. It is demonstrated that the statistical bounds are shown to be comparable with the deterministic bounds in quadratic assignment problems. As to empirical research, environment pollution has become a worldwide problem, and transportation can cause a great amount of pollution. A new method for calculating and comparing the CO2-emissions of online and brick-and-mortar retailing is proposed. It leads to the conclusion that online retailing has significantly lesser CO2-emissions. Another problem is that the Swedish regional division is under revision and the border effect to public service accessibility is concerned of both residents and politicians. After analysis, it is shown that borders hinder the optimal location of public services and consequently the highest achievable economic and social utility may not be attained.