Outer Trust-Region Method for Constrained Optimization


Autoria(s): BIRGIN, Ernesto G.; CASTELANI, Emerson V.; MARTINEZ, Andre L. M.; MARTINEZ, J. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

Given an algorithm A for solving some mathematical problem based on the iterative solution of simpler subproblems, an outer trust-region (OTR) modification of A is the result of adding a trust-region constraint to each subproblem. The trust-region size is adaptively updated according to the behavior of crucial variables. The new subproblems should not be more complex than the original ones, and the convergence properties of the OTR algorithm should be the same as those of Algorithm A. In the present work, the OTR approach is exploited in connection with the ""greediness phenomenon"" of nonlinear programming. Convergence results for an OTR version of an augmented Lagrangian method for nonconvex constrained optimization are proved, and numerical experiments are presented.

PRONEX-CNPq/FAPERJ[E-26/111.449/2010-APQ1]

PRONEX-CNPq/FAPERJ

FAPESP[2006/53768-0]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[2005/57684-2]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

Identificador

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, v.150, n.1, p.142-155, 2011

0022-3239

http://producao.usp.br/handle/BDPI/30378

10.1007/s10957-011-9815-5

http://dx.doi.org/10.1007/s10957-011-9815-5

Idioma(s)

eng

Publicador

SPRINGER/PLENUM PUBLISHERS

Relação

Journal of Optimization Theory and Applications

Direitos

restrictedAccess

Copyright SPRINGER/PLENUM PUBLISHERS

Palavras-Chave #Nonlinear programming #Augmented Lagrangian method #Trust regions #Operations Research & Management Science #Mathematics, Applied
Tipo

article

original article

publishedVersion