Approximating a class of combinatorial problems with rational objective function
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others. CNPq (Brazil)[490333/04-4] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq (Brazil)[307011/03-8] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq (Brazil)[305702/07-6] CNPq Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ProNEx - FAPESP/CNPq (Brazil)[2003/09925-5] CONICYT (Chile) CONICYT (Chile) Anillo en Redes Anillo en Redes[ACT08] FONDECYT Fondecyt[1060035] |
Identificador |
MATHEMATICAL PROGRAMMING, v.124, n.1/Fev, p.255-269, 2010 0025-5610 http://producao.usp.br/handle/BDPI/30368 10.1007/s10107-010-0364-8 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Mathematical Programming |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Approximation algorithms #Rational objective #Covering #ALGORITHMS #ASSIGNMENT #COMPLEXITY #Computer Science, Software Engineering #Operations Research & Management Science #Mathematics, Applied |
Tipo |
article original article publishedVersion |