996 resultados para Spin stabilized artificial satellites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from effective mass Hamiltonian, we systematically investigate the symmetry of low-dimensional structures with spin-orbit interaction and transverse magnetic field. The position-dependent potentials are assumed to be space symmetric, which is ever-present in theory and experiment research. By group theory, we analyze degeneracy in different cases. Spin-orbit interaction makes the transition between Zeeman sub-levels possible, which is originally forbidden within dipole approximation. However, a transition rule given in this paper for the first time shows that the transition between some levels is forbidden for space symmetric potentials. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the Dyakonov-Perel spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment [K. L. Litvinenko et al., New J. Phys. 8, 49 (2006)]. We find a strong resonant enhancement of the spin relaxation time appears for spin align along [1 (1) over bar0] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the spin-dependent transport through Cd1-xMnxTe diluted magnetic semiconductor (DMS) quantum dots (QD's) under the influence of both the external electric field and magnetic field using the recursion method. Our results show that (1) it can get a 100% polarized electric current by using suitable structure parameters; (2) for a fixed Cd1-xMnxTe DMS QD, the wider the system is, the more quickly the transmission coefficient increases; (3) for a fixed system length, the transmission peaks of the spin-up electrons move to lower Fermi energy with increasing Cd1-xMnxTe DMS QD radius, while the transmission of the spin-down electrons is almost unchanged; (4) the spin-polarized effect is slightly increased for larger magnetic fields; (5) the external static electric field moves the transmission peaks to higher or lower Fermi energy depending on the direction of the applied field; and (6) the spin-polarized effect decreases as the band offset increases. Our calculated results may be useful for the application of Cd1-xMnxTe DMS QD's to the spin-dependent microelectronic and optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy dispersion of an electron in a double quantum wire with a diluted magnetic semiconductor barrier in between is calculated. An external magnetic field modifies significantly the energy dispersion of the electron which is different for the two spin states. The conductance exhibits many interesting peaks and dips which are directly related to the energy dispersions of the different electron spin states. These phenomena are attributed to the interwell coupling which can be tuned by the magnetic field due to the s-d exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the in-plane conductance of a barrier with the Dresselhaus spin-orbit interaction, which is sandwiched between two spin-polarized materials aligned arbitrarily. Besides a transmitted in-plane current which arises on the drain side as pointed out in Phys. Rev. Lett. 93, 056601 (2004), a reflected in-plane current always appears simultaneously on the source side near the interface of the barrier. The spin polarization of the source affects the transmitted current more than the reflected one, and conversely the spin polarization of the drain affects the reflected current more. The relationship between transmitted current and the reflected one has been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k(3) Dresselhaus effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with previous work [Phys. Rev. B 67, 201304(R) (2003) and Phys. Rev. Lett. 93, 056601 (2004)], it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a new simple route to realize a high resolution nanograting. By adopting an InAlGaAs matrix and strain-compensated technique, we have proved that a uniform self-assembled InAs nanowire array can be fabricated by molecular beam epitaxy (MBE). A nanograting woven by self-assembled semiconductor nanowires shows a conspicuous diffraction feature. The good agreement between the theoretical and experimental values of diffraction peak positions indicates that a uniform nanowire array is a promising nanograting. This simple one-step MBE growth method will open exciting opportunities for the field of clever optics design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Heisenberg XXZ spin chain is investigated under an inhomogeneous magnetic field b. We show that the ground-state entanglement is independent of the interaction of z-component J(z). The thermal entanglement at the fixed temperature can be enhanced when J(z) increases. We strictly show that for any temperature T and J(z), the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field b(c) is independent of J(z). The critical magnetic field B-c increases with the increasing parallel to b parallel to but the maximum entanglement value that the system can arrive at becomes smaller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot embedded in a tunneling barrier is investigated using the Bardeen transfer Hamiltonian. The tunneling current oscillates with an increasing magnetic field for a fixed bias. Many peaks are observed with an increasing external bias under a fixed magnetic field. Spin polarization of the tunneling current is tuned by changing the external bias under a weak magnetic field.