974 resultados para POLYCRYSTALLINE SILICON FILMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-silicon alloy pins were slid against steel disks under nominally dry condition at a speed of 0.6 m s-1. Each pin was slid at a constant load for 5 min, the load being increased in suitable steps from 2 to 65 N. The results show the wear to increase almost monotonically with load, to be sensitive to the presence of silicon in the alloy, and to be insensitive to actual silicon content. The monotonic nature of wear rate-load characteristic suggests that one dominant wear mechanism prevails over the load range studied. Morphological studies of the pin surface and the debris support this contention and point to delamination as being the dominant mode of wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a lot of effort to make Silicon optically active. In this work we examine two methods of generating nanocrystals of Silicon from bulk fragments. This approach of ours allows us to play with the shape of the nanocrystals and therefore the degeneracy of the conduction band minimum. We go on to examine whether similar sized particles with different shapes have the same physical properties, and finally whether Silicon may be rendered optically active by this route. While we do find that similar sized particles with different shapes may have different band gaps, this route of modifying the degeneracy of the conduction band minimum makes nano Si slightly optically active.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apparent thermal activation energy of 0.56 eV and the electron thermal capture cross section of 2.0 × 10-16 cm2 are measured for the gold related acceptor level in p+ nn+ silicon diodes by isothermal current transient and DLTS techniques. Using the emission and capture rate data and a degeneracy ratio of 2, the energy separation of the trap level from the conduction band is calculated and found to have the same temperature dependence as the band gap indicating that the acceptor level is pinned with respect to the valence band a t Ev + 0.637 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic TiO2 thin films can be highly useful in many environments and applications. They can be used as self-cleaning coatings on top of glass, tiles and steel to reduce the amount of fouling on these surfaces. Photocatalytic TiO2 surfaces have antimicrobial properties making them potentially useful in hospitals, bathrooms and many other places where microbes may cause problems. TiO2 photocatalysts can also be used to clean contaminated water and air. Photocatalytic oxidation and reduction reactions proceed on TiO2 surfaces under irradiation of UV light meaning that sunlight and even normal indoor lighting can be utilized. In order to improve the photocatalytic properties of TiO2 materials even further, various modification methods have been explored. Doping with elements such as nitrogen, sulfur and fluorine, and preparation of different kinds of composites are typical approaches that have been employed. Photocatalytic TiO2 nanotubes and other nanostructures are gaining interest as well. Atomic Layer Deposition (ALD) is a chemical gas phase thin film deposition method with strong roots in Finland. This unique modification of the common Chemical Vapor Deposition (CVD) method is based on alternate supply of precursor vapors to the substrate which forces the film growth reactions to proceed only on the surface in a highly controlled manner. ALD gives easy and accurate film thickness control, excellent large area uniformity and unparalleled conformality on complex shaped substrates. These characteristics have recently led to several breakthroughs in microelectronics, nanotechnology and many other areas. In this work, the utilization of ALD to prepare photocatalytic TiO2 thin films was studied in detail. Undoped as well as nitrogen, sulfur and fluorine doped TiO2 thin films were prepared and thoroughly characterized. ALD prepared undoped TiO2 films were shown to exhibit good photocatalytic activities. Of the studied dopants, sulfur and fluorine were identified as much better choices than nitrogen. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on various complex shaped substrates by exploiting the good qualities of ALD. A clear enhancement in the photocatalytic activity was achieved with these nanostructures. Several new ALD processes were also developed in this work. TiO2 processes based on two new titanium precursors, Ti(OMe)4 and TiF4, were shown to exhibit saturative ALD-type of growth when water was used as the other precursor. In addition, TiS2 thin films were prepared for the first time by ALD using TiCl4 and H2S as precursors. Ti1-xNbxOy and Ti1-xTaxOy transparent conducting oxide films were prepared successfully by ALD and post-deposition annealing. Highly unusual, explosive crystallization behaviour occurred in these mixed oxides which resulted in anatase crystals with lateral dimensions over 1000 times the film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature films remain critical flagships to any national film industry. Australian feature films can be highly commercial endeavours that also perform symbolic functions by embodying the national imaginary in big screen based sound and imagery. They conduct a dialogue with domestic audiences as well as showcase key aspects of Australia in the global film festival circuit. As the pre-eminent filmmaking form, feature films also serve as important launchpads for the careers of many Australian writers, directors, actors and technical crew. In the wake of over a decade of diminished share of local box office obtained by Australian feature films, Australian Feature Films and Distribution: Industry or cottage industry, examines issues in the production sector affecting the performance of Australian feature films and some responses by the central funding and support screen agency, Screen Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.