975 resultados para Operating space diagram
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures. Applying similar protocols to examine the extent to which structural overlaps occur between different fold groups, it appears this effect is confined to just a few architectures and is largely due to small, recurring super-secondary motifs (e.g., alpha beta-motifs, alpha-hairpins). Although 24% of superfamilies overlap with superfamilies having different folds, only 14% of nonredundant structures in CATH are involved in overlaps. Nevertheless, the existence of these overlaps suggests that, in some regions of structure space, the fold universe should be seen as more continuous.
Resumo:
The nonequilibrium phase transition of the one-dimensional triplet-creation model is investigated using the n-site approximation scheme. We find that the phase diagram in the space of parameters (gamma, D), where gamma is the particle decay probability and D is the diffusion probability, exhibits a tricritical point for n >= 4. However, the fitting of the tricritical coordinates (gamma(t), D(t)) using data for 4 <= n <= 13 predicts that gamma(t) becomes negative for n >= 26, indicating thus that the phase transition is always continuous in the limit n -> infinity. However, the large discrepancies between the critical parameters obtained in this limit and those obtained by Monte Carlo simulations, as well as a puzzling non-monotonic dependence of these parameters on the order of the approximation n, argue for the inadequacy of the n-site approximation to study the triplet-creation model for computationally feasible values of n.
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.
Resumo:
In this paper we prove the existence of closed geodesics in the leaf space of some classes of singular Riemannian foliations (s.r.f.), namely s.r.fs. that admit sections or have no horizontal conjugate points. We also investigate the shortening process with respect to Riemannian foliations.
Resumo:
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
Resumo:
In this work we compute the fundamental group of each connected component of the function space of maps from it closed surface into the projective space
Resumo:
In this paper we give a partially affirmative answer to the following question posed by Haizhong Li: is a complete spacelike hypersurface in De Sitter space S(1)(n+1)(c), n >= 3, with constant normalized scalar curvature R satisfying n-2/nc <= R <= c totally umbilical? (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work, we show for which odd-dimensional homotopy spherical space forms the Borsuk-Ulam theorem holds. These spaces are the quotient of a homotopy odd-dimensional sphere by a free action of a finite group. Also, the types of these spaces which admit a free involution are characterized. The case of even-dimensional homotopy spherical space forms is basically known.
Resumo:
We solve the Bjorling problem for timelike surfaces in the Lorentz-Minkowski space through a split-complex representation formula obtained for this kind of surface. Our approach uses the split-complex numbers and natural split-holomorphic extensions. As applications, we show that the minimal timelike surfaces of revolution as well as minimal ruled timelike surfaces can be characterized as solutions of certain adequate Bjorling problems in the Lorentz-Minkowski space. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.
Resumo:
We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.
Resumo:
In this paper, we show that the Wijsman hyperspace of a metric hereditarily Baire space is Baire. This solves a recent question posed by Zsilinszky. (C) 2009 Elsevier B.V. All rights reserved.