989 resultados para Olfactory Receptor Neuron
Resumo:
Purpose: The runt-related transcription factor, Runx2 may have an oncogenic role in mediating metastatic events in breast cancer, but whether Runx2 has a role in the early phases of breast cancer development is not clear. We examined the expression of Runx2 and its relationship with oestrogen receptor (ER) and progesterone receptor (PR) in breast cancer cell lines and tissues.
Resumo:
Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P
Resumo:
Background: Epidermal growth factor receptor gene (EGFR) variants may be useful markers for identifying responders to gefitinib and erlotinib, small-molecule tyrosine kinase inhibitors of EGFR; therefore, sensitive and cost-effective assays are needed to detect EGFR variants in routine clinical samples. We have developed a partially denaturing HPLC (pDHPLC) assay that is superior to direct sequencing with respect to detection limits, costs, and time requirements.
Resumo:
Background: The long-term effects of adjuvant polychemotherapy regimens in oestrogen-receptor-poor (ER-poor) breast cancer, and the extent to which these effects are modified by age or tamoxifen use, can be assessed by an updated meta-analysis of individual patient data from randomised trials. Methods: Collaborative meta-analyses of individual patient data for about 6000 women with ER-poor breast cancer in 46 trials of polychemotherapy versus not (non-taxane-based polychemotherapy, typically about six cycles; trial start dates 1975-96, median 1984) and about 14 000 women with ER-poor breast cancer in 50 trials of tamoxifen versus not (some trials in the presence and some in the absence of polychemotherapy; trial start dates 1972-93, median 1982). Findings: In women with ER-poor breast cancer, polychemotherapy significantly reduced recurrence, breast cancer mortality, and death from any cause, in those younger than 50 years and those aged 50-69 years at entry into trials of polychemotherapy versus not. In those aged younger than 50 years (1907 women, 15% node-positive), the 10-year risks were: recurrence 33% versus 45% (ratio of 10-year risks 0·73, 2p<0·00001), breast cancer mortality 24% versus 32% (ratio 0·73, 2p=0·0002), and death from any cause 25% versus 33% (ratio 0·75, 2p=0·0003). In women aged 50-69 years (3965 women, 58% node-positive), the 10-year risks were: recurrence 42% versus 52% (ratio 0·82, 2p<0·00001), breast cancer mortality 36% versus 42% (ratio 0·86, 2p=0·0004), and death from any cause 39% versus 45% (ratio 0·87, 2p=0·0009). Few were aged 70 years or older. Tamoxifen had little effect on recurrence or death in women who were classified in these trials as having ER-poor disease, and did not significantly modify the effects of polychemotherapy. Interpretation: In women who had ER-poor breast cancer, and were either younger than 50 years or between 50 and 69 years, these older adjuvant polychemotherapy regimens were safe (ie, had little effect on mortality from causes other than breast cancer) and produced substantial and definite reductions in the 10-year risks of recurrence and death. Current and future chemotherapy regimens could well yield larger proportional reductions in breast cancer mortality.
Resumo:
Malignant pleural mesothelioma is an asbestos-related neoplasm with poor prognosis, refractory to current therapies, the incidence of which is expected to increase in the next decades. Female gender was identified as a positive prognostic factor among other clinical and biological prognostic markers for malignant mesothelioma, yet a role of estrogen receptors (ERs) has not been studied. Our goal was to investigate ERs expression in malignant mesothelioma and to assess whether their expression correlates with prognosis. Immunohistochemical analysis revealed intense nuclear ER beta staining in normal pleura that was reduced in tumor tissues. Conversely, neither tumors nor normal pleura stained positive for ER alpha. Multivariate analysis of 78 malignant mesothelioma patients with pathologic stage, histologic type, therapy, sex, and age at diagnosis indicated that FRO expression is an independent prognostic factor of better survival. Moreover, studies in vitro confirmed that treatment with 17 beta-estradiol led to an ER beta-mediated inhibition of malignant mesothelioma cell proliferation as well as p21(CIP1) and p27(KIP1) up-regulation. Consistently cell growth was suppressed by ER beta overexpression, causing a G(2)-M-phase cell cycle arrest, paralleled by cyclin B1 and survivin down-regulation. Our data support the notion that ER beta acting as a tumor suppressor is of high potential relevance to prediction of disease progression and to therapeutic response of malignant mesothelioma patients. [Cancer Res 2009;69(11):4598-604]
Resumo:
The Raf-mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase (PI3K)-AKT pathways are two downstream effectors of the small GTPase Ras. Although both pathways are positively regulated by Ras, the Raf-MAPK and PI3K-AKT pathways have been shown to control opposing functions within the cell, suggesting a need for cross-talk regulation. The PI3K -AKT pathway can inhibit the Raf-MAPK pathway directly during processes such as muscle differentiation. Here we describe the ability of the Raf-MAPK pathway to negatively regulate the PI3K-AKT pathway during cellular arrest. Constitutive activation of Raf or methyl ethyl ketone 1 (MEK1) leads to inhibition of AKT and cellular arrest. Furthermore, we show that activation of Raf-MEK1 signaling causes negative feedback inhibition of Ras through the ephrin receptor EphA(2). EphA(2)-mediated negative feedback inhibition is required for Raf-induced AKT inhibition and cell cycle arrest, therefore establishing the inhibition of the Ras-PI3K-AKT pathway as a necessary event for the Raf-MEK1-regulated cellular arrest.
Resumo:
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.