1000 resultados para Mythic Method
Resumo:
We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.
Resumo:
We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.
Resumo:
Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.
Resumo:
The nanocomposites of xTiO(2)+(1-x)Ni0.53Cu0.12Zn0.35Fe2O4 (where 0 <= x >= 1) were prepared using microwave hydrothermal (M H) method at 165 degrees C/45 min. The as-synthesized powders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The particle size of the powder varies from 18 to 35 nm. The as prepared powders were densified at 500 degrees C/30 min using microwave sintering method. The sintered composites were characterized by XRD and scanning electron microscopy (SEM). The bulk densities of the present composites were increasing with the addition of TiO2. The grain sizes of all the composite vary between 65 nm and 90 nm. The addition of TiO2 to ferrite increased the dielectric properties (epsilon' and epsilon `') also the resonant frequency of all the composites was found to be greater than 1 GHz. The imaginary part of permeability mu `' was found to increase with an increase of TiO2.
Resumo:
The rapid development of communication and networking has lessened geographical boundaries among actors in social networks. In social networks, actors often want to access databases depending upon their access rights, privacy, context, privileges, etc. Managing and handling knowledge based access of actors is complex and hard for which broad range of technologies need to be called. Access based on dynamic access rights and circumstances of actors impose major tasks on access systems. In this paper, we present an Access Mechanism for Social Networks (AMSN) to render access to actors over databases taking privacy and status of actors into consideration. The designed AMSN model is tested over an Agriculture Social Network (ASN) which utilises distinct access rights and privileges of actors related to the agriculture occupation, and provides access to actors over databases.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for grid interfaced inverters, for smart grid application. The PLC method is based on the concept of the composite vector which involves multiple components rotating at different harmonic frequencies. The pulsed information is modulated on the fundamental component of the grid current as a specific repeating sequence of a particular harmonic. The principle of communication is same as that of power flow, thus reducing the complexity. The power flow and information exchange are simultaneously accomplished by the interfacing inverters based on current programmed vector control, thus eliminating the need for dedicated hardware. Simulation results have been shown for inter-inverter communication, both under ideal and distorted conditions, using various harmonic modulating signals.
Resumo:
Moving shadow detection and removal from the extracted foreground regions of video frames, aim to limit the risk of misconsideration of moving shadows as a part of moving objects. This operation thus enhances the rate of accuracy in detection and classification of moving objects. With a similar reasoning, the present paper proposes an efficient method for the discrimination of moving object and moving shadow regions in a video sequence, with no human intervention. Also, it requires less computational burden and works effectively under dynamic traffic road conditions on highways (with and without marking lines), street ways (with and without marking lines). Further, we have used scale-invariant feature transform-based features for the classification of moving vehicles (with and without shadow regions), which enhances the effectiveness of the proposed method. The potentiality of the method is tested with various data sets collected from different road traffic scenarios, and its superiority is compared with the existing methods. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Before installation, a voltage source converter is usually subjected to heat-run test to verify its thermal design and performance under load. For heat-run test, the converter needs to be operated at rated voltage and rated current for a substantial length of time. Hence, such tests consume huge amount of energy in case of high-power converters. Also, the capacities of the source and loads available in the research and development (R&D) centre or the production facility could be inadequate to conduct such tests. This paper proposes a method to conduct heat-run tests on high-power, pulse width modulated (PWM) converters with low energy consumption. The experimental set-up consists of the converter under test and another converter (of similar or higher rating), both connected in parallel on the ac side and open on the dc side. Vector-control or synchronous reference frame control is employed to control the converters such that one draws certain amount of reactive power and the other supplies the same; only the system losses are drawn from the mains. The performance of the controller is validated through simulation and experiments. Experimental results, pertaining to heat-run tests on a high-power PWM converter, are presented at power levels of 25 kVA to 150 kVA.
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Past studies use deterministic models to evaluate optimal cache configuration or to explore its design space. However, with the increasing number of components present on a chip multiprocessor (CMP), deterministic approaches do not scale well. Hence, we apply probabilistic genetic algorithms (GA) to determine a near-optimal cache configuration for a sixteen tiled CMP. We propose and implement a faster trace based approach to estimate fitness of a chromosome. It shows up-to 218x simulation speedup over the cycle-accurate architectural simulation. Our methodology can be applied to solve other cache optimization problems such as design space exploration of cache and its partitioning among applications/ virtual machines.
Resumo:
Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.
Resumo:
Brust-Schiffrin synthesis (BSS) of metal nanoparticles has emerged as a major breakthrough in the field for its ability to produce highly stable thiol functionalized nanoparticles. In this work, we use a detailed population balance model to conclude that particle formation in BSS is controlled by a new synthesis route: continuous nucleation, growth, and capping of particles throughout the synthesis process. The new mechanism, quite different from the others known in the literature (classical LaMer mechanism, sequential nucleation-growth-capping, and thermodynamic mechanism), successfully explains key features of BSS, including size tuning by varying the amount of capping agent instead of the widely used approach of varying the amount of reducing agent. The new mechanism captures a large body of experimental observations quantitatively, including size tuning and only a marginal effect of the parameters otherwise known to affect particle synthesis sensitively. The new mechanism predicts that, in a constant synthesis environment, continuous nucleation-growth-capping mechanism leads to complete capping of particles (no more growth) at the same size, while the new ones are born continuously, in principle leading to synthesis of more monodisperse particles. This prediction is validated through new experimental measurements.
Resumo:
An efficient parallelization algorithm for the Fast Multipole Method which aims to alleviate the parallelization bottleneck arising from lower job-count closer to root levels is presented. An electrostatic problem of 12 million non-uniformly distributed mesh elements is solved with 80-85% parallel efficiency in matrix setup and matrix-vector product using 60GB and 16 threads on shared memory architecture.
Resumo:
A new method of modeling partial delamination in composite beams is proposed and implemented using the finite element method. Homogenized cross-sectional stiffness of the delaminated beam is obtained by the proposed analytical technique, including extension-bending, extension-twist and torsion-bending coupling terms, and hence can be used with an existing finite element method. A two noded C1 type Timoshenko beam element with 4 degrees of freedom per node for dynamic analysis of beams is implemented. The results for different delamination scenarios and beams subjected to different boundary conditions are validated with available experimental results in the literature and/or with the 3D finite element simulation using COMSOL. Results of the first torsional mode frequency for the partially delaminated beam are validated with the COMSOL results. The key point of the proposed model is that partial delamination in beams can be analyzed using a beam model, rather than using 3D or plate models. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline Ni-Zn ferrites with a well-defined composition of Ni0.4Zn0.6Fe2-xSbxO4 synthesized using sol-gel method. Morphological characterizations on the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. The powders were densified using microwave sintering method. The room temperature complex permittivity (epsilon' and epsilon aEuro(3)) and permeability (mu' and mu aEuro(3)) were measured over a wide frequency range from 1 MHz-1.8 GHz. The real part of permittivity varies as `x' concentration increases and the resonance frequency was observed at much higher frequencies and there is a significant decrease in the loss factor (tan delta). The electrical resistivity and permeability of NiZn ferrites increased with an increase of Sb content. As the concentration of `x' increases from 0 to 0.08 the saturation magnetisation decreases. The saturation magnetization (M-s) a parts per thousand aEuro parts per thousand 52.211 A.m(2)/Kg for x = 0 at room temperature. The room temperature electro paramagnetic resonance (EPR) were studied.