971 resultados para Liver damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+ irradiation at room temperature and 350-degrees-C has been studied. For irradiations at 350-degrees-C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 x 10(15) Si/cm2 for GaAs, and is 5 x 10(15) Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350-degrees-C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage removal and strain relaxation in the As+-implanted Si0.57Ge0.43 epilayers were studied by double-crystal x-ray diffractometry and transmission electron microscopy. The results presented in this paper indicate that rapid thermal annealing at temperatures higher than 950 degrees C results in complete removal of irradiation damage accompained by the formation of GeAs precipitates which enhance the removal process of dislocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron-irradiated high-resistivity silicon detectors have been subjected to elevated temperature annealing (ETA). It has been found that both detector full depletion voltage and leakage current exhibit abnormal annealing (or ''reverse annealing'') behaviour for highly irradiated detectors: increase with ETA. Laser induced current measurements indicate a net increase of acceptor type space charges associated with the full depletion voltage increase after ETA. Current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) data show that the dominant effect is the increase of a level at 0.39 eV below the conduction band (E(c) - 0.39 eV) or a level above the valence band (E(v) + 0.39 eV). Candidates tentatively identified for this level are the singly charged double vacancy (V-V-) level at E(c) - 0.39 eV, the carbon interstitial-oxygen interstitial (C-i-O-i) level at E(v) + 0.36 eV, and/or the tri-vacancy-oxygen center (V3O) at E(v) + 0.40 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolution of localized damage zone is a key to catastrophic rupture in heterogeneous materials. In the present article, the evolutions of strain fields of rock specimens are investigated experimentally. The observed evolution of fluctuations and autocorrelations of strain fields under uniaxial compression demonstrates that the localization of deformation always appears ahead of catastrophic rupture. In particular, the localization evolves pronouncedly with increasing deformation in the rock experiments. By means of the definition of the zone with high strain rate and likely damage localization, it is found that the size of the localized zone decreases from the sample size at peak load to an eventual value. Actually, the deformation field beyond peak load is bound to suffer bifurcation, namely an elastic unloading part and a continuing but localized damage part will co-exist in series in a specimen. To describe this continuous bifurcation and localization process observed in experiments, a model on continuum mechanics is developed. The model can explain why the decreasing width of localized zone can lead stable deformation to unstable, but it still has not provided the complete equations governing the evolution of the localized zone.