970 resultados para Group Identification
Resumo:
The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.
Resumo:
Secure group communication is a paradigm that primarily designates one-to-many communication security. The proposed works relevant to secure group communication have predominantly considered the whole network as being a single group managed by a central powerful node capable of supporting heavy communication, computation and storage cost. However, a typical Wireless Sensor Network (WSN) may contain several groups, and each one is maintained by a sensor node (the group controller) with constrained resources. Moreover, the previously proposed schemes require a multicast routing support to deliver the rekeying messages. Nevertheless, multicast routing can incur heavy storage and communication overheads in the case of a wireless sensor network. Due to these two major limitations, we have reckoned it necessary to propose a new secure group communication with a lightweight rekeying process. Our proposal overcomes the two limitations mentioned above, and can be applied to a homogeneous WSN with resource-constrained nodes with no need for a multicast routing support. Actually, the analysis and simulation results have clearly demonstrated that our scheme outperforms the previous well-known solutions.
Resumo:
Securing group communication in wireless sensor networks has recently been extensively investigated. Many works have addressed this issue, and they have considered the grouping concept differently. In this paper, we consider a group as being a set of nodes sensing the same data type, and we alternatively propose an efficient secure group communication scheme guaranteeing secure group management and secure group key distribution. The proposed scheme (RiSeG) is based on a logical ring architecture, which permits to alleviate the group controller’s task in updating the group key. The proposed scheme also provides backward and forward secrecy, addresses the node compromise attack, and gives a solution to detect and eliminate the compromised nodes. The security analysis and performance evaluation show that the proposed scheme is secure, highly efficient, and lightweight. A comparison with the logical key hierarchy is preformed to prove the rekeying process efficiency of RiSeG. Finally, we present the implementation details of RiSeG on top of TelosB sensor nodes to demonstrate its feasibility.
Resumo:
This paper presents part of a study that aimed to understand how the emergence of algebraic thinking takes place in a group of four-year-old children, as well as its relationship to the exploration of children‘s literature. To further deepen and guide this study the following research questions were formulated: (1) How can children's literature help preschoolers identify patterns?; (2) What strategies and thinking processes do children use to create, analyze and generalize repeating and growing patterns?; (3) What strategies do children use to identify the unit of repeat of a pattern? and (4) What factors influence the identification of patterns? The paper focuses only on the strategies and thinking processes that children use to create, analyze and generalize repeating patterns. The present study was developed with a group of 14 preschoolers in a private school in Lisbon, and it was carried out with all children. In order to develop the research, a qualitative research methodology under the interpretive paradigm was chosen, emphasizing meanings and processes. The researcher took the dual role of teacher-researcher, conducting the study with her own group and in her own natural environment. Participant observation and document analysis (audio and video recordings, photos and children productions) were used as data collection methods. Data collection took place from October 2013 to April 2014. The results of the study indicate that children master the concept of repeating patterns, and they are able to identify the unit of repeat, create and analyze various repeating patterns, evolving from simpler to more complex forms.
Resumo:
Desde o início da utilização da imunohistoquímica em anatomia patológica, um dos objetivos tem sido detetar as quantidades mais ínfimas de antigénio, tornando-o visível ao microscópio ótico. Vários sistemas de amplificação têm sido aplicados de forma a concretizar este objetivo, tendo surgido um grupo genérico de métodos simples e que apresentam uma amplificação superior: são os denominados métodos do polímero indireto. Tendo em conta a variedade de métodos disponíveis, o autor propõe-se a comparar a qualidade de quatro sistemas de amplificação, que recorrem ao método do polímero indireto com horseradish peroxidase (HRP). Foram utilizadas lâminas de diferentes tecidos, fixados em formol e incluídos em parafina, nos quais se procedeu à identificação de 15 antigénios distintos. Na amplificação recorreu-se a quatro sistemas de polímero indireto (Dako EnVision+ System – K4006; LabVision UltraVision LP Detection System – TL-004-HD; Leica NovoLink – RE7140-k; Vector ImmPRESS Reagent Kit – MP-7402). A observação microscópica e classificação da imunomarcação obtida foram feitas com base num algoritmo que enquadra intensidade, marcação específica, marcação inespecífica e contraste, num score global que pode tomar valores entre 0 e 25. No tratamento dos dados, para além da estatística descritiva, foi utilizado o teste one-way ANOVA com posthoc de tukey (alfa=0.05). O melhor resultado obtido, em termos de par média/desvio-padrão, dos scores globais foi o do NovoLink (22,4/2,37) e o pior foi o do EnVision+ (17,43/3,86). Verificou-se ainda que existe diferença estatística entre os resultados obtidos pelo sistema NovoLink e os sistemas UltraVision (p=.004), ImmPRESS (p=.000) e EnVision+ (p=.000). Concluiu-se que o sistema que permitiu a obtenção de melhores resultados, neste estudo, foi o Leica NovoLink.
Resumo:
The demonstration proposal moves from the capabilities of a wireless biometric badge [4], which integrates a localization and tracking service along with an automatic personal identification mechanism, to show how a full system architecture is devised to enable the control of physical accesses to restricted areas. The system leverages on the availability of a novel IEEE 802.15.4/Zigbee Cluster Tree network model, on enhanced security levels and on the respect of all the users' privacy issues.
Resumo:
Graphics processor units (GPUs) today can be used for computations that go beyond graphics and such use can attain a performance that is orders of magnitude greater than a normal processor. The software executing on a graphics processor is composed of a set of (often thousands of) threads which operate on different parts of the data and thereby jointly compute a result which is delivered to another thread executing on the main processor. Hence the response time of a thread executing on the main processor is dependent on the finishing time of the execution of threads executing on the GPU. Therefore, we present a simple method for calculating an upper bound on the finishing time of threads executing on a GPU, in particular NVIDIA Fermi. Developing such a method is nontrivial because threads executing on a GPU share hardware resources at very fine granularity.
Resumo:
A study about the physical appearance of pre-photographic, photomechanical, photographic and digital positive reflective prints was made, relating the obtained images with the history, materials and technology used to create them. The studied samples are from the Image Permanence Institute (IPI) study collection. The digital images were obtained using a digital SLR on a copystand and a compound light microscope, with different lighting angles (0º, 45ºand 90º) and magnifications from overall views on the copystand down to a 20x objective lens on the microscope. Most of these images were originally created by IPI for www.digitalsamplebook.org, a web tool for teaching print identification, and will be used on the www.graphicsatlas.org website, along with textual information on identification, technology and history information about these reproduction processes.
Resumo:
This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.
Resumo:
This paper presents the measurement, frequency-response modeling and identification, and the corresponding impulse time response of the human respiratory impedance and admittance. The investigated adult patient groups were healthy, diagnosed with chronic obstructive pulmonary disease and kyphoscoliosis, respectively. The investigated children patient groups were healthy, diagnosed with asthma and cystic fibrosis, respectively. Fractional order (FO) models are identified on the measured impedance to quantify the respiratory mechanical properties. Two methods are presented for obtaining and simulating the time-domain impulse response from FO models of the respiratory admittance: (i) the classical pole-zero interpolation proposed by Oustaloup in the early 90s, and (ii) the inverse discrete Fourier Transform (DFT). The results of the identified FO models for the respiratory admittance are presented by means of their average values for each group of patients. Consequently, the impulse time response calculated from the frequency response of the averaged FO models is given by means of the two methods mentioned above. Our results indicate that both methods provide similar impulse response data. However, we suggest that the inverse DFT is a more suitable alternative to the high order transfer functions obtained using the classical Oustaloup filter. Additionally, a power law model is fitted on the impulse response data, emphasizing the intrinsic fractal dynamics of the respiratory system.
Resumo:
In this paper, we present a multilayer device based on a-Si:H/a-SiC:H that operates as photodetector and optical filter. The use of such device in protein detection applications is relevant in Fluorescence Resonance Energy Transfer (FRET) measurements. This method demands the detection of fluorescent signals located at specific wavelengths bands in the visible part of the electromagnetic spectrum. The device operates in the visible range with a selective sensitivity dependent on electrical and optical bias. Several nanosensors were tested with a commercial spectrophotometer to assess the performance of FRET signals using glucose solutions of different concentrations. The proposed device was used to demonstrate the possibility of FRET signals detection, using visible signals of similar wavelength and intensity. The device sensitivity was tuned to enhance the wavelength band of interest using steady state optical bias at 400 nm. Results show the ability of the device to detect signals in this range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Solution enthalpies of adamantan-1-ol, 2-methyl- butan-2-ol, and 3-methylbutan-1-ol have been measured at 298.15 K, in a set of 16 protogenic and non-protogenic solvents. The identification and quantification of solvent effects on the solution processes under study were performed using quantitative-structure property relationships. The results are discussed in terms of solute-solvent-solvent interactions and also in terms of the influence of compound's size and position of its hydroxyl group.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclos do Ensino Básico