1000 resultados para Geometría algebraica
Resumo:
Se presenta el programa de Matemáticas para el Ciclo Medio (tercero, cuarto y quinto) dividido en diferentes bloques temáticos: conjuntos y relaciones, conjuntos numéricos, medidas, y topología y geometría. El objetivo de este programa es orientar la enseñanza de las Matemáticas en cuanto a la organización de las estructuras mentales, a la construcción de conceptos básicos y a la adquisición de unos automatismos operativos.
Resumo:
Monográfico con el título: 'Las TIC en la educación obligatoria: de la teoría a la política y la práctica'. Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
Breve repaso a la institución de la educación secundaria en Bulgaria, que no existió hasta su consolidación en 1865 y que finalmente se expresó por medio de una ley de reforma educativa en 1891, extendiéndose así por todo el territorio búlgaro ya unificado. Las escuelas donde se impartía la enseñanza se las llamaba Gimnasios y comprendían dos ciclos, el inferior: primera, segunda y tercera clase y el superior cuarta, quinta, sexta y séptima clase. Los docentes eran profesores titulares y aspirantes. En 1909 se votó una nueva Ley de Instrucción Pública que comprendía todos los grados de enseñanza. Cada grupo podía acoger hasta 42 alumnos. La carga idiomática como materias de enseñanza de los Gimnasios es muy importante, aprendiendo: ruso, francés o alemán, griego y latín, así como materias básicas como las matemáticas, geometría, geografía, historia natural, higiene, dibujo, caligrafía, canto y gimnasia. Desde su creación hasta 1941, Bulgaria contaba con cien Gimnasios, de los que la mayoría eran masculinos.
Resumo:
Por la importancia económica y educativa de las Artes y Oficios Artísticos en España, se decide crear gracias a la solicitud y a la ayuda económica de su Ayuntamiento, la Escuela de Artes y Oficios Artísticas en la ciudad de Mondoñedo, en Lugo, en la que se impartirían las enseñanzas de Aritmética, Geometría y Elementos de construcción; Gramática y caligrafía, Cultura general y nociones de artes; Dibujo lineal y artístico; Elementos de Física y Química y Nociones de Mecánica; Corte y Confección; Carpintería artística y Metalistería y forja.
Resumo:
Programa de Innovación Educativa 1983. Proyecto realizado por el equipo educativo del Colegio. Proyecto encuadernado junto con la Programación para el primer curso de Formación Profesional Compensatoria
Resumo:
Esta innovación obtuvo Mención honorífica en los Premios Nacionales de Investigación e Innovación Educativas 1994
Resumo:
Premio a la Innovación Educativa, 2000, Tercer premio. Anexo Memoria en C-Innov. 114
Resumo:
Contiene: memoria descriptiva y resumen. Premios Nacionales de Innovación Educativa CIDE 2001
Resumo:
Diseñar y ensayar una metodología experimental de uso de la tecnología informática en la enseñanza de las Matemáticas en Educación Secundaria, seleccionando las herramientas informáticas necesarias y elaborando materiales didácticos para el aula. Diseñar y aplicar un modelo de evaluación del aprendizaje del alumnado para medir el grado de consecución de los objetivos docentes. 8 grupos de alumnos-as de ESO y BUP, 5 piloto y 3 de contraste, de 3 centros de la provincia de Madrid. Se seleccionan las herramientas informáticas adecuadas a la experiencia y los contenidos del currículo susceptibles de abordarse con una metodología experimental: funciones, lugares geométricos y cónicas y funciones trigonométricas. Sobre cada contenido se elaboran materiales didácticos para el alumnado en forma de cuaderno de prácticas. Se aplican los materiales elaborados y se evalúan, estudiando las características de las poblaciones. Se aplican pruebas iniciales y finales para medir los conocimientos del alumnado antes y después del desarrollo de la experiencia y se analizan las diferencias significativas entre los grupos piloto y de contraste. Mediante una encuesta de opinión se mide el grado de aceptación del alumnado en relación con la experiencia. Se seleccionan las herramientas informáticas Derive y Cabri-Géomètre y la calculadora algebraica TI-92 y se observa un alto grado de aceptación de las mismas por parte del alumnado. Con el uso de la tecnología informática y la metodología experimental, se observa una mejoría en las calificaciones y una mayor participación en las clases. Se aprecia un contraste significativo entre los grupos piloto 4 y 5 y el grupo de control 7, con mejores rendimientos para los primeros tras la aplicación de la experiencia.
Resumo:
Planificar la enseñanza de la Matemática en la universidad, ciclo 1, y elaborar modelos para las pruebas de acceso. Conocer el uso de la Matemática en la práctica laboral. Determinar sistema de acceso a la universidad, contenidos matemáticos de COU y pruebas matemáticas de Selectividad, más idóneos, mediante un análisis comparado con otros países. Elaborar estudios introductorios de los principales temas matemáticos, que sirvan de ayuda a un profesorado heterogéneo. Número indeterminado de licenciados en Ingeniería, Física, Química, Biología, Medicina, Farmacia, Sociología, Economía, Psicología y Pedagogía en activo. Sistema de acceso a la universidad, pruebas y programas matemáticos en varios países. Contenidos matemáticos usuales en COU y la universidad. Se consideran las nociones matemáticas empleadas por la muestra en su práctica laboral. Sistema de acceso a la Universidad vigentes en Francia, RDA, Suiza, Austria, Gran Bretaña y EEUU. Contenidos matemáticos de los programas de las pruebas de acceso de varios países y España. Tipo de pruebas matemáticas empleado en varios países. Esta metodología: visión introductoria, enfoque histórico y alternativo y apoyo bibliográfico para cada contenido. Se detalla qué Matemáticas emplean los profesionales. Cálculo y análisis se usan bastante en todo sector laboral, álgebra y geometría, sobre todo en Ingenieria, por su relación con la tecnología, probabilidad y estadística, las más usadas, en carreras experimentales. Se detallan sistemas de acceso, pruebas y contenidos matemáticos en varios países, se recomienda que los examenes sean independientes para cada materia y los tribunales, nombrados por las universidades, tengan un representante del centro escolar. Las universidades dicten normas de acceso sin considerar expedientes académicos, el programa matemático sea más amplio y menos universitario, con métodos numéricos sencillos y aplicaciones prácticas. El examen consta de 2 partes, multirrespuesta y problemas, que evalúen objetivos de conocimiento, comprensión y aplicación y de síntesis y análisis. Se elaboraron 10 monografías: no reales, sucesiones y series. Convergencia y continuidad, espacios métricos y estructuras topológicas y algebraicas, cálculo diferencial, optimización, estructuras del álgebra, polinomios, álgebra lineal, geometría, probabilidad, estadística. Se han elaborado tres informes cualitativos, modalidades existentes en las pruebas de acceso a la universidad, contenidos de esas pruebas y enfoque didáctico que debe darse a las asignaturas matemáticas en el primer ciclo universitario, y un estudio de campo, cuantificación del uso de diversos tópicos matemáticos por parte de los titulados superiores, en la docencia, en la investigación y en el ejercicio profesional, como contribución a la mejora del nivel didáctico de las asignaturas de Matemáticas que se imparten en la universidad y del actual sistema de acceso a la Enseñanza Superior.
Resumo:
Determinar y analizar el nivel de los conocimientos geométricos con el que los alumnos acceden a la universidad; determinar y analizar la variación que pueda experimentar dicho nivel durante los cuatro años que constituyen el período de estudio, cursos 1991-92 a 1994-95; estudiar la incidencia que, en el citado nivel, pueda tener la estructuración de los contenidos geométricos del Plan de Estudios del Sistema Educativo LGE, bajo cuyas directrices se han formado los alumnos que constituyen la población objeto de estudio; precisar y analizar las disparidades que este nivel pueda presentar al diferenciar dichos conocimientos según cada uno de los tres tipos de Geometría que se dan en la asignatura de Dibujo Técnico: Geometría Métrica Plana, Geometría Métrica del Espacio y Geometría Descriptiva; estudiar y analizar como pueden influir las capacidades intelectuales de los alumnos, relativas a la operatividad, razonamiento y memorización de los conceptos geométricos preuniversitarios, en las presuntas variaciones que se observen; redactar y proponer un cuestionario de Dibujo Técnico, a partir del cual se pueda medir, con el mayor grado de fiabilidad posible, no sólo el citado nivel de conocimientos geométricos en cada una de las áreas; estudiar la continuidad en la formación geométrica de los alumnos y alumnas en la enseñanza no universitaria y su prolongación en la enseñanza universitaria; identificar los contenidos fundamentales a alcanzar en los niveles preuniversitarios; establecer y valorar relaciones interdisciplinares del área gráfica con otras ramas formativas: matemáticas, física, ciencias sociales, etc. Planteamiento de hipótesis. Alumnos de nuevo ingreso matriculados en primer curso de la ETS de Ingenieros de Caminos Canales y Puertos de la Universidad Politécnica de Madrid durante cuatro cursos consecutivos: 1991-92 al 1994-95. Las variables a analizar fueron: puntuación total, puntuaciones parciales en las áreas de Geometría Métrica Plana, Geometría Métrica del Espacio y Geometría Descriptiva; puntuaciones parciales en los conocimientos obtenidos en las etapas de EGB, BUP y COU, puntuaciones parciales en las áreas de información, operatividad y razonamiento. SPSS-X para Windows. Como conclusiones generales se indican: 1. Durante los cuatro años de estudio, el nivel de conocimientos geométricos de los alumnos que ingresan en la ETS de Ingeniero de Caminos es bajo. 2. La población presenta unas características homogéneas. 3. En cuanto al Área de Conocimiento, en la Geometría Métrica del Espacio es donde se dan tanto el menor nivel de conocimientos bien adquiridos como el mayor nivel de conocimientos erróneos y el mayor nivel de desconocimiento. 4. En cuanto al Área de Actividad Mental, no se pueden establecer diferencias claras y definidas entre los respectivos niveles de conocimientos bien adquiridos, o de conocimientos erróneos, o de desconocimiento. 5. En cuanto al área de Referencia Cronológica, resulta ser en COU donde se dan, tanto el menor nivel de conocimientos bien adquiridos, como el mayor nivel de conocimientos erróneos; y en EGB donde se dan, al contrario tanto el mayor nivel de conocimientos bien adquiridos, como el menor nivel de conocimientos erróneos. 6. Se ha redactado un cuestionario de Dibujo Técnico compuesto de treinta preguntas, que permitirá medir óptimamente el nivel de conocimientos geométricos con que los alumnos acceden a la universidad. 7. Se han observado lagunas de contenidos y falta de continuidad en el estudio de la Geometría en el plan de estudios de la LGE. 8. Se proponen unos contenidos geométricos en la enseñanza secundaria de la LOGSE, secuenciados por cursos. Estos contenidos serán necesarios para aquellos alumnos que tengan intención de iniciar una enseñanza universitaria de carácter técnico, ingeniero o arquitecto. 9. Se han observado relaciones importantes de la Geometría, contemplada en las materias de Dibujo y Matemáticas, con otras áreas formativas: materias de Historia de las civilizaciones, Geografía e Historia de España y los países hispánicos, Filosofía, Historia del Arte, Ciencias Naturales, Geología, Biología, Física y Química.
Resumo:
Los objetivos son: elaborar, experimentar y valorar unos materiales escritos destinados a la formación científica y didáctica de profesores de matemáticas de enseñanza secundaria, concebidos para ser utilizados personalmente, pero susceptibles de ser usados como material básico en cursos de formación de profesores. Hipótesis: 1. Se produciría en el profesorado un cambio positivo de las expectativas respecto a la utilidad de este tipo de material y un incremento significativo de sus conocimientos sobre el tema y su didáctica. 2. Una importante proporción de profesores de enseñanza media poco proclive a participar en cursos de actualización, estaría dispuesto a dedicar tiempo y esfuerzo a su autoformación mediante el uso de un material con las características del presente. 48 profesores de matemáticas de enseñanza secundaria de la Comunidad de Madrid. Se desarrollan tres tipos de materiales: de geometría, de análisis y de estadística. Estos materiales se presentan a profesores de matemáticas para que realicen una crítica de cada uno de los bloques de esos módulos. Para ello se les pide que rellenen un cuestionario. Se desarrollan dos etapas, la primera sirve como instrumento para desarrollar mejor la segunda, y en la segunda, corregidos los errores, se obtienen las conclusiones. Se utiliza un cuestionario denominado guías de lectura crítica, un cuestionario de actitudes y expectativas, y pruebas de conocimiento para comparar la variación de conocimientos antes y después de haber leído el material diseñado. Dentro del análisis se escoge el tema de la optimización, a través del cual se muestra el crecimiento de una rama de la matemática a través de los siglos. El 80 por ciento de los participantes son licenciados en matemáticas. La edad de los participantes se mueve entre los 26 y los 51 años. El motivo para participar es porque es una buena ocasión para actualizar los conocimientos sin tener que asistir a actividades programadas. Los materiales elaborados resultan satisfactorios en lo que se refiere a: organización y estructura, adecuación de su nivel de dificultad a la situación del profesorado de secundaria, capacidad para despertar el interés de los profesores sobre los contenidos de los módulos, posibilidad de que la mayor parte de los bloques diseñados puedan ser utilizados en el aula. Siempre que se den determinadas condiciones, un porcentaje significativo de profesores de matemáticas de secundaria participan en un programa de autoformación científica y didáctica y llevan a término las actividades relacionadas con él. La razón que hace que muchos profesores participen es su carácter de autoformación. Se ha dedicado un tiempo medio para la formación de 25 horas. Los materiales se leen en el orden presentado, aunque se pueden leer en cualquier orden. Para que un plan de autoformación alcance los objetivos que se esperan, debe cumplir las condiciones: utilización de materiales elaborados específicamente con esta finalidad y con determinadas condiciones formales y de contenido, participación de manera voluntaria y a iniciativa del interesado, otención de acreditación similar a la que corresponde a otras actividades de formación. Los materiales elaborados han producido un incremento significativo en los conocimientos sobre los temas que eran objeto. La participación en el programa de formación ha sido satisfactoria para casi todos los sujetos..