990 resultados para GAAS(100)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At a medium substrate temperature of 400 degrees C and a lower As flux, we have grown an ultrafast AlGaAs/GaAs photorefractive multiple quantum well (MQW) structure by molecular beam epitaxy. The as-grown sample exhibits strong photorefractive effect under the transverse Frantz-Keldysh geometry. A peak electroabsorption of 2100 cm(-1) is measured in the as-grown sample in an 11 kV/cm dc electric field, and the peak photorefractive diffraction efficiency can be 1.2%. After postgrowth annealing, the photorefractive effect becomes weak and disappears in samples annealed above 700 degrees C. Using optical transient current spectroscopy, deep levels are measured in these samples. It is found that deep levels are stable against annealing until 700 degrees C. Using a pump-probe technique, carrier lifetimes are measured at room temperature. We find that the as-grown sample has a lifetime of 20 ps, while the 700 degrees C annealed sample has a lifetime of more than 200 ps. The ultrafast lifetime in the as-grown sample is caused by point defects, not by As clusters. Our result show that AlGaAs/GaAs MQW structure grown around 400 degrees C has better performance of the photorefractive effect. (C) 1999 American Institute of Physics. [S0003-6951(99)04036-X].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) spectroscopy and carrier lifetime measurement has been used to characterize optical properties of defects in the low-temperature (LT) grown GaAs/AlGaAs multiple quantum well structures. Two sets of samples were grown at 400 degrees C by molecular beam epitaxy on nominal (001) and miscut [4 degrees off (001) towards (111) A] GaAs substrates, respectively. After growth, samples were subjected to 30 s rapid thermal annealing at 600-800 degrees C. It is found that after annealing, two defect-related PL features appear in the samples grown on nominal (001) GaAs substrates, but not in those grown on miscut (001) GaAs substrates. The carrier lifetimes are about 31 and 5 ps in as-grown samples grown on nominal and miscut (001) GaAs substrates, respectively. The different PL spectra and carrier lifetimes in two sets of samples are attributed to different structures of the As-Ga-like defects formed during LT growth. (C) 1999 American Institute of Physics. [S0003-6951(99)00230-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable temperature photoluminescence (PL) measurements for In0.3Ga0.7As(6 nm)/GaAs(34 nm) quantum dot superlattices with a period of 20 and an In0.3Ga0.7As(6 nm)/GaAs(34 nm) reference single quantum well have been conducted. It is found that the temperature dependence is different between the quantum dots and the reference single quantum well. The PL peak energy of the single quantum well decreases faster than that of the quantum dots with increasing temperature. The PL peak energy for the InGaAs/GaAs quantum dots closely follows the InAs band gap in the temperature range from 11 to 170 K, while the PL peak energy for the InGaAs/GaAs quantum well closely follows the GaAs band gap. In comparison with InAs/GaAs quantum dots, the InGaAs/GaAs quantum dots are more typical as a zero-dimensional system since the unusual PL results, which appear in the former, are not obvious for the latter. (C) 1999 American Institute of Physics. [S0021-8979(99)08615-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodicity fluctuations of layer thickness and composition in a superlattice not only decrease the intensity, they also broaden the width of the satellite peaks in the x-ray diffraction pattern. In this letter, we develop a method that is dependent on the width of satellite peaks to assess periodicity fluctuations of a superlattice quickly. A linear relation of the magnitude of fluctuations, peak width and peak order has been derived from x-ray diffraction kinematical theory. By means of this method, periodicity fluctuations in strained (GaNAs)(1)(GaAs)(m) superlattices grown on GaAs substrates by molecular beam epitaxy have been studied. Distinct satellite peaks indicate that the superlattices are of high quality. The N composition of 0.25 and its fluctuation of 20% in a strained GaNxAs1-x monolayer are obtained from simulations of the measured diffraction pattern. The x-ray simulations and in situ observation results of reflection high-energy electron diffraction are in good agreement. (C) 1999 American Institute of Physics. [S0003-6951(99)00828-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room-temperature Raman scattering studies of longitudinal optic phonons in AlAs/AlxGa1-xAs and GaAs/AlxGa1-xAs short-period superlattices with different layer thicknesses were reported. The AlAs LO modes confined in AlAs layers and GaAs-like LO modes confined in AlxGa1-xAs layers were observed in AlAs/AlxGa1-xAs superlattices under off-resonance conditions. And the GaAs LO modes confined in GaAs layers and AlAs-like LO modes confined in AlxGa1-xAs layers were observed in GaAs/AlxGa1-xAs superlattices. In addition, the AlAs interface mode in AlAs/AlxGa1-xAs was also observed under near-resonance conditions. Based on the linear chain mode, the frequencies of confined LO modes measured by Raman scattering were unfolded according to q=m/(n+1)(2 pi/a(0)) by which the dispersion curves of AlAs-like and GaAs-like LO phonons in AlxGa1-xAs mixed crystal were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using three analytical phonon models in quantum wells-the slab model, the guided-mode model, and the improved version of the Huang-Zhu model [Phys. Rev. B 38, 13 377 (1998)], -and the phonon modes in bulk, the energy-loss rates of hot carriers due to the Frohlich potential scattering in GaAs/AlAs multiple quantum wells (MQW's) are calculated and compared to those obtained based on a microscopic dipole superlattice model. In the study, a special emphasis is put on the effects of the phonon models on the hot-carrier relaxation process when taking the hot-phonon effect into account. Our numerical results show that, the calculated energy-loss rates based on the slab model and on the improved Huang-Zhu model are almost the same when ignoring the hot-phonon effect; however, with the hot phonon effect considered, the calculated cooling rate as well as the hot phonon occupation number do depend upon the phonon models to be adopted. Out of the four analytical phonon models investigated, the improved Huang-Zhu model gives the results most close to the microscopic calculation, while the guided-mode model presents the poorest results. For hot electrons with a sheet density around 10(12)/cm(2), the slab model has been found to overestimate the hot-phonon effect by more than 40% compared to the Huang-Zhu model, and about 75% compared to the microscopic calculation in which the phonon dispersion is fully included. Our calculation also indicates that Nash's improved version [J. Lumin. 44, 315 (1989)] is necessary for evaluating the energy-loss rates in quantum wells of wider well width, because Huang-Zhu's original analytical formulas an only approximately orthogonal for optical phonons associated with small in-plane wave numbers. [S0163-1829(99)08919-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of self-organization of quantum dots (QDs) during the growth of InGaAs/GaAs multilayers on GaAs (1 0 0) was investigated with cross-sectional transmission electron microscopy (XTEM), and double-crystal X-ray diffraction (DCXD). We found that the QDs spacing in the first layer can affect the vertical alignment of QDs. There seems to exist one critical lateral QD spacing, below which merging of QDs with different initial size is found to be the dominant mechanism leading to perfect vertical alignment. Once the critical value of QDs spacing is reached, the InGaAs QDs of the first layer are simply reproduced in the upper layers. The X-ray rocking curve clearly shows two sets of satellite peaks, which correspond to the QDs superlattice, and multi-quantum wells (QW) formed by the wetting layers around QDs. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of cubic-phase GaN (c-GaN) films are investigated by photoluminescence (PL) and Raman scattering spectroscopy. C-GaN films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition. PL measurements show that the near-band-edge emissions in the as-grown GaN layers and thermally treated samples are mainly from c-GaN. No degradation of the optical qualities is observed after thermal annealing. Raman scattering spectroscopy shows that the intensity of the E-2 peak from hexagonal GaN grains increases with annealing temperature for the samples with poor crystal quality, while thermal annealing up to 1000 degrees C has no obvious effect on the samples with high crystal quality. (C) 1999 American Institute of Physics. [S0003-6951(99)04719-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ ultra high vacuum scanning probe microscopy (SPM) and low-temperature :photoluminescence (PL) studies have been performed on Si-doped self-organized InAs/GaAs quantum dots samples to investigate the Si doping effects. Remarkably, when Si is doped in the sample, according to the SPM images, more small dots are formed when compared with images from undoped samples. On the PL spectra, high-energy band tail which correspond to the small dots appear, with increasing doping concentration, the integral intensity of the high-energy band tail account for the whole peak increase too. We relate this phenomenon to a model that takes the Si atom as the nucleation center for QDs formation. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current-voltage (I-V) characteristics of a doped weakly coupled GaAs/AlAs superlattice (SL) with narrow barriers are measured under hydrostatic pressure from 1 bar to 13.5 kbar at both 77 and 300 K. The experimental results show that, contrary to the results in SL with wide barriers, the plateau in the I-V curve at 77 K does not shrink with increasing pressure, and becomes wider after 10.5 kbar. It is explained by the fact that the E-Gamma 1-E-Gamma 1 resonance peak is higher than the E-Gamma 1-E-X1 resonance peak. At 300 K, however, because of the more important contribution of the nonresonant component to the current, the plateau shrinks with increasing pressure. (C) 1999 American Institute of Physics. [S0021-8979(99)02008-3].