954 resultados para Fractional Advection-Dispersion Equation
Resumo:
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of α = 2β, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.
Resumo:
By studying classical realizations of the sl(2, R-fraktur sign) algebra in a two dimensional phase space (q,π), we have derived a continuous family of new actions for free fractional spin particles in 2 + 1 dimensions. For the case of light-like spin vector (SμSμ = 0), the action is remarkably simple. We show the appearence of the Zitterbewegung in the solutions of the equations of motion, and relate the actions to others in the literature at classical level. © 1997 Elsevier Science B.V.
Resumo:
A forward dispersion calculation is implemented for the spin polarizabilities γ1, ⋯, γ4 of the proton and the neutron. These polarizabilities are related to the spin structure of the nucleon at low energies and are structure-constants of the Compton scattering amplitude at script O sign(ω3). In the absence of a direct experimental measurement of these quantities, a dispersion calculation serves the purpose of constraining the model building, and of comparing with recent calculations in heavy baryon chiral perturbation theory. © 1998 Elsevier Science B.V.
Resumo:
We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
Resumo:
The Gel'fand-Levitan formalism is used to study how a selected set of bound states can be eliminated from the spectrum of the Coulomb potential and also how to construct a bound state in the Coulomb continuum. It is demonstrated that a sizeable quantum well can be produced by deleting a large number of levels from the s spectral series and the edge of the Coulomb potential alone can support the von Neumann-Wigner states in the continuum. © 1998 Elsevier Science B.V.
Resumo:
The two-body Dirac(Breit) equation with potentials associated to one-boson-exchanges with cutoff masses is solved for the deuteron and its observables calculated. The 16-component wave-function for the Jπ = 1+ state contains four independent radial functions which satisfy a system of four coupled differential equations of first order. This system is numerically integrated, from infinity towards the origin, by fixing the value of the deuteron binding energy and imposing appropriate boundary conditions at infinity. For the exchange potential of the pion, a mixture of direct plus derivative couplings to the nucleon is considered. We varied the pion-nucleon coupling constant, and the best results of our calculations agree with the lower values recently determined for this constant.
Resumo:
Bose-Einstein condensation in an ideal (i.e. interactionless) boson gas can be studied analytically, at university-level statistical and solid state physics, in any positive dimensionality (d > 0) for identical bosons with any positive-exponent (s > 0) energy-momentum (i.e. dispersion) relation. Explicit formulae with arbitrary dls are discussed for: the critical temperature (non-zero only if d/s > 1); the condensate fraction; the internal energy; and the constant-volume specific heat (found to possess a jump discontinuity only if d/s > 2) Classical results are recovered at sufficiently high temperatures. Applications to ordinary' Bose-Einstein condensation, as well as to photons, phonons, ferro-and antiferromagnetic magnons, and (very specially) to Cooper pairs in superconductivity, are mentioned.
Resumo:
Making use of a recursive approach, derivative dispersion relations are generalized for an arbitrary number of subtractions. The results for both cross even and odd amplitudes are theoretically consistent at sufficiently high energies and in the region of small momentum transfer. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this letter we discuss the (2 + 1)-dimensional generalization of the Camassa-Holm equation. We require that this generalization be, at the same time, integrable and physically derivable under the same asymptotic analysis as the original Camassa-Holm equation. First, we find the equation in a perturbative calculation in shallow-water theory. We then demonstrate its integrability and find several particular solutions describing (2 + 1) solitary-wave like solutions. © 1999 Published by Elsevier Science B.V. All rights reserved.