995 resultados para FRAGARIA X ANANASSA
Resumo:
A stoichiometric Gd2O3-x thin film has been grown on a silicon (10 0) substrate with a low-energy dual ion-beam epitaxial technique. Gd2O3-x shares Gd2O3 structures although there are many oxygen deficiencies in the film. The photoluminescence (PL) measurements have been performed in a temperature range 5-300 K. The detailed characters of the peak position, the full-width at half-maximum (FWHM) and the peak intensity at different temperature were reported. An anomalous intensity behavior of the PL spectra has been observed, which is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Therefore, we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and employ the model of singlet-triplet exchange splitting of exciton to discuss the four peaks observed in the experiment. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The YCo5.0-xMnxGa7.0 compounds crystallize with the ScFe6Ga6-type structure. The lattice of YCo5.0-xMnxGa7.0 expands with the increase of the Mn content for 0.05 <= x <= 2.5, but the lattice of YCo2.0Mn3.0Ga7.0 shrinks compared with YCo2.5Mn2.5Ga7.0. The shrinkage of the lattice is attributed to the magnetostriction of YCo2.0Mn3.0Ga7.0. The substitution of Mn for Co forms magnetic clusters in the antiferromagnetic matrix. The magnetic frustration results in the spin-glass-like behavior for 0.8 <= x <= 1.5 and the difference between zero-field-cooling (ZFC) and field-cooling (FC) magnetizations for x = 2.0, 2.5, and 3.0. A stable long-range magnetic ordering appears among the Mn-centered magnetic clusters with the ordering temperature 110 K for x = 2.0. The hump in the thermomagnetization of YCo3.0Mn2.0Ga7.0 can be attributed to the competitive effects between the thermal fluctuation and the enhanced magnetic interaction. Both the hump and the bifurcation between the ZFC and the FC magnetizations of YCo3.0Mn2.0Ga7.0 occur at lower temperatures as the applied field increases. On the two-step magnetization curve of YCo3.0Mn2.0Ga7.0, the inflection point at 4000 Oe is due to the coercive field, and the magnetic moments in the clusters are tilted to the applied field above 4000 Oe. The magnetic ordering temperature is further increased to 210 K for x = 2.5 and to 282 K for x = 3.0. The spontaneous magnetization of YCo2.0Mn3.0Ga7.0 is 0.575 mu B/f.u. at 5 K with a canted magnetic structure.
Resumo:
A rearrangeable nonblocking thermo-optic 4 x 4 switching matrix is demonstrated. The matrix, which consists of five 2 x 2 multimode interference-based Mach-Zehnder interferometer (MMI-MZI) switch elements, is fabricated in silicon-on-insulator waveguide system. The average excess loss for the optical path experiencing 2 and 3 switch elements is 6.6 and 10.1 dB respectively. The crosstalk in the matrix is measured to be between -12 and -19 dB. The switching time of the device is less than 30 mu s.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45&DEG; tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.
Resumo:
A set of GaNxAs1-x samples with a small content of nitrogen (N) (< 1%) were investigated by continuous-wave photoluminescence (PL), pulse-wave excitation PL, and photo reflectance technology. Temperature-and excitation-dependence of PL disclosed the intrinsic band gap properties of alloy states in GaNxAs1-x, which was extremely different from the N-related impurity states. At the same time, PR spectra were also studied in this work.
Resumo:
Molecular beam epitaxy (MBE) growth of (InyGa1-yAs/GaAs1-xSbx)/GaAs bilayer quantum well (BQW) structures has been investigated. It is evidenced by photo luminescence (PL) that a strong blue shift of the PL peak energy of 47 meV with increasing PL excitation power from 0.63 to 20 mW was observed, indicating type II band alignment of the BQW. The emission wavelength at room temperature from (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW is longer (above 1.2 μ m) than that from InGaAs/GaAs and GaAsSb/GaAs SQW structures (1.1 μ m range), while the emission efficiency from the BQW structures is comparable to that of the SQW. Through optimizing growth conditions, we have obtained room temperature 1.31 μ m wavelength emission from the (InyGa1-yAs/GaAs1-xSbx)/GaAs BQW. Our results have proved experimentally that the GaAs-based bilayer (InyGa1-yAs/GaAs1-xSbx)/GaAs quantum well is a useful structure for the fabrication of near-infrared wavelength optoelectronic devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The valence band offset (VBO) of the wurtzite InN/ZnO heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.82 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.85 -/+ 0.23 eV, which indicates a type-I band alignment for InN/ZnO heterojunction. (C) 2007 American Institute of Physics.
Resumo:
The fluctuations of the strained layer in a superlattice or quantum well can broaden the width of satellite peaks in double crystal X-ray diffraction (DCXRD) pattern. It is found that the width of the 0(th) peak is directly proportional to the fluctuation of the strained layer if the other related facts are ignored. By this method, the Ge-Si atomic interdiffusion in Ge nano-dots and wetting layers has been investigated by DCXRD. It is found that thermal annealing can activate Ge-Si atomic interdiffusion and the interdiffusion in the nano-dots area is much stronger than that in the wetting layer area. Therefore the fluctuation of the Ge layer decreases and the distribution of Ge atoms becomes homogeneous in the horizontal Ge (GeSi actually) layer, which make the width of the 0(th) peak narrow after annealing.
Resumo:
ZnO films prepared at different temperatures and annealed at 900 degrees C in oxygen are studied by photoluminescence (PL) and x-ray photoelection spectroscopy (XPS). It is observed that in the PL of the as-grown films the green luminescence (GL) and the yellow luminescence (YL) are related, and after annealing the GL is restrained and the YL is enhanced. The O 1s XPS results also show the coexistence of oxygen vacancy (Vo) and interstitial oxygen (O-i) before annealing and the quenching of the V-o after annealing. By combining the two results it is deduced that the GL and YL are related to the V-o and O-i defects, respectively.
Resumo:
A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4 X 4 switch matrix is designed and fabricated. A spot-size converter is integrated to reduce the insertion loss, and a new driving circuit is designed to improve the response speed. The insertion loss is less than 10 dB, and the response time is 950 us. (c) 2007 Optical Society of America
Resumo:
National Natural Science Foundation of China 60836002 10674130 60521001;Major State Basic Research of China 2007CB924903;Chinese Academy of Sciences KJCX2.YW.W09-1
Resumo:
It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex: layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.