972 resultados para Detrital organic matter


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Rock-Eval pyrolysis of rock samples and the elemental analysis of kerogens show clear differences between Messinian black shales and Pliocene-Pleistocene sapropels recovered during ODP Leg 107. The Messinian black shales are characterized by a large variety of compositions which probably reflects a great diversity of depositional and diagenetic paleoenvironments. In contrast, the Pliocene-Pleistocene sapropels, occurring as discrete layers in nannofossil oozes barren of organic carbon, constitute a rather homogeneous group in terms of organic content. A considerable contribution of terrestrial organic matter in the sapropels could mean that an identical phenomenon of terrestrial input has been periodically reproduced in the basin. The maturity and the nature of the organic matter are discussed with respect to anomalous values recorded for Tmax parameter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on observations during four scientific expeditions to the Kara Sea and the Siberian rivers Ob and Yenisei we determined the discharge, distribution and characteristics of dissolved organic matter (DOM). Surface concentrations of dissolved organic carbon (DOC) ranged from 151 IlM C in the northern Kara Sea to 939 IlM C in the river Ob. The estimated annual mean DOC concentration in the Yenisei (681 IlM C) was slightly higher than in the Ob (640 IlM C). Dissolved organic nitrogen (DON) concentrations typically varied between 5 and 15 IlM N with higher values in the rivers. Freshwater discharge and DOC concentrations experienced pronounced seasonal variations strongly affecting the spatial and temporal distribution of DOM in the Kara Sea. The largely conservative distribution of DOC and DON along the salinity gradient indicated the predominantly refractory character of riverine DOM. This observation was consistent with laboratory experiments, which showed only minor losses due to flocculation processes and bacterial consumption. Optical properties and relatively high C/N ratios (19 to 51) of DO M suggest that a large fraction of river DOM is of terrestrial origin and that phytoplankton contributed little to DOM on the Kara Sea shelf during the sampling periods. Together, the rivers Ob and Yenisei discharge about 8 Tg DOC yr- I into the Kara Sea. Due to the absence of efficient removal mechanisms in these estuaries the majority of riverine DOM appears to pass the estuarine mixing zone and is transported towards the Arctic Ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have determined (1) the abundance and isotopic composition of pyrite, monosulphide, elemental sulphur, organically bound sulphur, and dissolved sulphide; (2) the partition of ferric and ferrous iron; (3) the organic carbon contents of sediments recovered at two sites drilled on the Peru Margin during Leg 112 of the Ocean Drilling Program. Sediments at both sites are characterised by high levels of organically bound sulphur (OBS). OBS comprises up to 50% of total sedimentary sulphur and up to 1% of bulk sediment. The weight ratio of S to C in organic matter varies from 0.03 to 0.15 (mean = 0.10). Such ratios are like those measured in lithologically similar, but more deeply buried petroleum source rocks of the Monterey and Sisquoc formations in California. The sulphur content of organic matter is not limited by the availability of porewater sulphide. Isotopic data suggest that sulphur is incorporated into organic matter within a metre of the sediment surface, at least partly by reaction with polysulphides. Most inorganic Sulphur occurs as pyrite. Pyrite formation occurred within surface sediments and was limited by the availability of reactive iron. But despite highly reducing sulphidic conditions, only 35-65% of the total iron was converted to sulphide; 10-30% of the total iron still occurs as Fe(III). In surface sediments, the isotopic composition of pyrite is similar to that of both iron monosulphide and dissolved sulphide. Either pyrite, like monosulphide, formed by direct reaction between dissolved sulphide and detrital iron, and/or the sulphur species responsible for converting FeS to FeS2 is isotopically similar to dissolved sulphide. Likely stoichiometries for the reaction between ferric iron and excess sulphide imply a maximum resulting FeS2:FeS ratio of 1:1. Where pyrite dominates the pool of iron sulphides, at least some pyrite must have formed by reaction between monosulphide and elemental sulphur and/or polysulphide. Elemental sulphur (S°) is most abundant in surface sediments and probably formed by oxidation of sulphide diffusing across the sediment-water interface. In surface sediments, S° is isotopically heavier than dissolved sulphide, FeS and FeS2 and is unlikely to have been involved in the conversion of FeS to FeS2. Polysulphides are thus implicated as the link between FeS and FeS2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study uses a multiproxy approach in order to further understand the evolution of climate responses in the western Mediterranean as of the Last Glacial Maximum. Sediments from ODP Site 975 in the Algero-Balearic basin have been analysed at high resolution, both geochemically andmineralogicallly. The resulting data have been used as proxies to establish a sedimentary regime, primary marine productivity, the preservation of the proxies and oxygen conditions. Fluctuations in detrital element concentrations were mainly the consequence of wet/arid oscillations. Productivity has been established using Ba excess, according to which marine productivity appears to have been greatest during cold events Heinrich 1 and Younger Dryas. The S1 time interval was not as marked by increases in productivity as was the eastern Mediterranean. In contrast, the S1 interval was first characterized by a decreasing trend and then by a fall in productivity after the 8.2 ky BP dry-cold event. Since then productivity has remained low. Here we report that there was an important redox event in this basin, probably a consequence of the major oceanographic circulation change occurring in the western Mediterranean at 7.7 ky BP. This circulation change led to reventilation as well as to diagenetic remobilization of redox-sensitive elements and organic matter oxidation. Comparisons between our paleoceanographic reconstruction for this basin and those regarding other Mediterranean basins support the hypothesis that across the Mediterranean there were different types of responses to climate forcing mechanism. The Algero-Balearic basin is likely to be a key area for further understanding of the relationships between the North Atlantic and the eastern Mediterranean basins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organic-matter-rich Upper Cretaceous claystones from DSDP Hole 603B, lower continental rise, had organic carbon values ranging from 1.7 to 13.7%, C/N ratios from 32 to 72, and d13C values from -23.5 to -27.1 per mil. Lipid class maxima for the unbound alkanes (C29 and C31), unbound fatty acids (C28 and C30), and bound fatty acids (C24, C26 , and C28) and the strong odd-carbon and even-carbon preferences, respectively, suggested that the organic matter in these sediments was partially the result of input from continental plant waxes. Transport of the organic-matter-rich sediments to the deep sea from the near-shore environment probably resulted from turbiditic flow under oxygen-stressed conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twenty-four sediment samples from DSDP Holes 605 (Leg 93) and 613 (Leg 95) on the New Jersey continental rise were analyzed by pyrolysis-gas chromatography. Twelve of these samples were also analyzed by pyrolysis-gas chromatography/mass spectrometry. The degree of preservation of sediment organic matter, as determined by these techniques, helped to distinguish slumped sediments from sediments that have not moved from their original place of deposition. Total levels of pyrolyzable organic material, as determined from pyrolysis-gas chromatography, were low in sediments that were not slumped, indicating that the organic material is highly degraded. Nitrogen- and oxygen-containing compounds were the primary compounds detected by gas chromatography/mass spectrometry (GCMS) analysis of the pyrolyzate of non-slumped sediments. Smaller amounts of aromatic compounds and branched alkanes were also present in some of these samples. In contrast, slumped sediments showed larger amounts of pyrolyzable organic matter, as determined from pyrolysis-gas chromatography, and better preservation of alkyl chains in the sediment organic matter, as suggested by the presence of n-alkanes in GCMS analysis of the pyrolyzate. Better preservation of the organic matter in slumped sediments can be attributed to more moderate bioturbation by bottom-dwelling organisms at the original deposition site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Site 722 provides high resolution records of percent CaCO3, magnetic susceptibility, d18O, organic carbon, and coarse fraction for the past 3.4 m.y. from the crest of the Owen Ridge, northwestern Arabian Sea. Within this time interval, most of the carbonate percent variations can be attributed to terrigenous dilution and do not reflect changes in the carbonate system. From the late Pliocene to Present, the average rate of calcium carbonate accumulation increases from 1 to 3 g/cm**2/k.y. and the average accumulation of organic carbon decreases from 75 to 30 mg/cm**2/k.y. The carbonate component is more dissolved in the older interval. The long-term variations in carbonate accumulation may reflect a greater input of organic matter in the late Pliocene, which decomposes to produce CO2 and dissolve carbonate. Magnetic susceptibility and % noncarbonate (100 - CaCO3%) reflect changes in the amount of the lithogenic component in the sediments. The period of variation of lithogenic material is the same period as the original forcing of the regional summer monsoon, however, the timing matches global aridity patterns and global ice volume (sea level) changes. This preliminary analysis suggests that the high frequency variation of lithogenic material persists for at least the last 3.4 m.y. Within the last million years, calcium carbonate accumulation has a large amplitude signal that covaries with major changes in ice volume. Both calcium carbonate and noncarbonate (mostly terrigenous) accumulation are greatest during glacial stages. Interglacial intervals are characterized by low mass accumulation rates, increased foraminifer fragmentation, and increased opal concentration. The accumulation of organic carbon matches the high frequency changes in sedimentation rates. We attribute this high correlation to enhanced preservation of organic carbon by increased sedimentation rate. Of the three major biological components studied, only opal exhibits the variations expected for a biological productivity system forced by monsoonal upwelling driven by changes in northern hemisphere summer radiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organic petrological and geochemical analyses were performed on samples cored on Broken Ridge and Ninetyeast Ridge in the Central Indian Ocean during Leg 121. Organic carbon (Corg) contents are less than 1% in each individual sample and average Corg values calculated for larger stratigraphic units are less than 0.2%. Generally, there is more organic matter in Cretaceous sediments than in Tertiary. In the Cretaceous, the bulk of the organic matter consists of terrigenous debris, but a significant contribution of marine-derived organic matter was found in some samples, especially in the early Maestrichtian on Broken Ridge (Site 754). The youngest Pliocene-Pleistocene sediments at Site 758 (northern part of Ninetyeast Ridge) contain a significant amount of clastic material transported to the site by the (distal) Bengal Fan. In these sediments, Corg contents of up to 0.9% were measured and are due to the inflow of terrigenous organic debris. Corg values are positively correlated with bulk sediment accumulation rates (i.e., sediments contain more organic matter at times of faster deposition). The size of terrigenous organic particles is generally small in all sediments. The extremely small number of particles in the Cretaceous sediments at Site 758 and their smaller grain size, compared to the Cretaceous sediments on Broken Ridge, indicate that Cretaceous surface water paleocurrents flowed from southeast to northwest in the Proto-Indian Ocean. In the central Indian Ocean, sediments deposited above the carbonate compensation depth consist of nannofossil and foraminiferal oozes. In contrast to Corg values, calcite contents in the sediments are negatively correlated with bulk sediment accumulation rates (i.e., carbonate oozes were deposited only during times of extremely slow sedimentation). Therefore, older sediments deposited in the young and still narrow Indian Ocean accumulated faster and are less carbonate-rich than Neogene sediments, although carbonate accumulation rates were higher.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical analyses have been carried out on 40 samples from the sediment surface and 210 samples from cores that were taken from the edge of the African continental block at the Arabian Sea (coasts of Somalia and Kenya, from Cape Guardafui to Mombasa) on the occasion of the Indian Ocean Expedition of the German research vessel "Meteor" during the years 1964/65. The carbonate content shows its maximum on the northern part of the continental shelf of Africa, where fossil reef debris furnish the detritic portion of carbonate. In the southern part of the continental shelf of Africa the portion of carbonate is low, as it is heavily diluted by the non-carbonatic detritus. It is also in the deep-sea that a lower carbonate content is encountered below the calcite compensation depth. Trace elements in the carbonates: On the shelf and in its vicinity Sr and Mg are enriched. The enrichment has been brought about by the portion of reef debris, as this latter contains aragonite (enrichment of Sr) as well as high-magnesium calcite. The greatest part of the slope contains carbonates that are poor in trace elements and mainly made up of foraminifera (and of coccoliths). Below the carbonate compensation depth another enrichment of Mg takes place in the carbonates, which is probably due to a selective dissolution of calcite in comparison to dolomite. The iron and manganese contents of the carbonates are high (iron higher in coast proximity, manganese higher in the depth), but not genuine, as they come about in the course of the extraction of the carbonates as a result of the dissolution of authigenic Mn-Fe-minerals. Non-carbonatic portion of the sediments: In coast proximity an enrichment of quartz comes about. Within the quartz-rich zone it is the elements V, Cr, Fe, Ti, and B that have been enriched in the non-carbonatic components. This enrichment must be attributed to an elevated content of heavy minerals. In the case of Ti and Fe the preliminary enrichment brought about by processes of lateritisation on the continent plays a certain role. Toward the deep-sea an enrichment of the elements Mn Ni, Cu, and Zn takes place; these enrichments must be explained by authigenic Mn-Fe-minerals. Within the Mn-rich zone a belt running parallel to the coast stands out that shows an increased Mn-enrichment. However, this increase in enrichment does not apply to the elements Ni, Cu, and Zn. It is probable that this latter increased enrichment comes about as a result of the migration of manganese to the sediment surface. (Within the sediments there prevail reductive conditions, in the presence of which Mn is capable of migration, whereas at the sediment surface its precipitation comes about under oxidizing conditions). The quantity of organic matter mainly is dependent on grain size and on the rate of sedimentation. On the shelf an impoverishment of organic matter is to be encountered, as the sediments are coarse-grained. In the depth the impoverishment must be explained on the strength of a small rate of sedimentation. Between those two ranges organic substance is enriched. P and N show an enrichment in comparison to Corg with this applying all the more the smaller the absolute quantity of Corg is. In this particular case one has to do with an enrichment coming about during the diagenetic processes of organic matter. A comparison with the sediments from the Indian and Pakistani continental border in Arabian Sea shows as follows: on the African continental border the coarse detrital material has been transported farther out to deep-sea, which has something to do with the greater inclination of the surface of sedimentation. Carbonate is found in greater abundance on the African side. Its chemical composition is influenced by reef-debris which is missing by Indian-Pakistani side. The content of organic matter is lower on the African side. Contrary to that, the enrichments of N and P compared to organic matter are of an equal order of magnitude on both sides of the Arabian Sea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contents and distribution of particulate lipids were studied by thin-layer chromatography technique with flame ionization detection (Iatroscan TH-10) along the transect from the Ob River towards the Kara Sea. Lipid contents range from 18.4 to 266 µg/l with, average 84.97 µg/l, which comprises from 4.06 to 58.32 % of total particulate organic matter. Principal constituents of particulate lipids are hydrocarbons (32.14 % of total lipids on the average), polar compounds (29.85 %), wax and sterol esters (13.04 %), and mono- and diglycerides (12.52 %). Secondary components are presented by fatty acid esters (5.14 %), free fatty acids (4.56 %), triglycerides (2.32 %), and sterols (1.04 %). Specific composition of particulate lipids along the Ob River - Kara Sea transect is formed under strong impact of river run-off. Particulate lipid composition reflects differences between processes of organic matter transformation in estuarine and marine parts of the transect, as well as peculiarities of species composition of Arctic living organisms.