995 resultados para Copper compounds
Resumo:
The title compound, [Cu(C5H3N2O2)(2)(H2O)(2)], is a new polymorph of the previously reported compound [Klein et al. (1982). Inorg. Chem. 21, 1891-1897]. The Cu-II atom, lying on an inversion center, is coordinated by two N atoms and two O atoms from two pyrazine-2-carboxylate ligands and by two water molecules in a distorted octahedral geometry with the water molecules occupying the axial sites. Intermolecular O-H center dot center dot center dot O, O-H center dot center dot center dot N and C-H center dot center dot center dot O hydrogen bonds connect the complex molecules into a two-dimensional layer parallel to (10 (1) over bar), whereas the previously reported polymorph exhibits a three-dimensional hydrogen-bonded network.
Resumo:
Two mononuclear neutral copper(I) complexes, Cu(L-1)PPh3 (1), Cu(L-2)(PPh3)(2) (2) ([L-1](-) = [{N((C6H3Pr2)-Pr-i-2,6)C(H)}(2)CPh](-); [L-2](-) = [{N(C6H5)C(H)}(2)CPh](-)) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered beta-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.
Resumo:
Four transition-metal-amine complexes incorporating indium thioarsenates with the general formula M(tren)InAsS4 (M=Mn, Co, and Zn) and a noncondensed AsS33- unit have been prepared and characterized. Single-crystal X-ray diffraction analyses show that compound 1 (M=Mn) crystallizes in the triclinic crystal system (space group: P (1) over bar) and consists of a one-dimensional (1D) inorganic (1)(infinity){[InAsS4](2-)} chain and [Mn(tren)](2+) groups bonded to the opposite sides of an eight-membered In2As2S4 ring along the backbone of the infinite inorganic chains. Compounds 2 (M=Mn), 3 (M=Zn), and 4 (M=Co) are isomorphous molecular compounds. They all crystallize in the monoclinic crystal system (space group: P2(1)/c). The Mn2+ cation of [Mn(tren)](2+) in 1 has a distorted octahedral environment, while the transition-metal cations of [M(tren)](2+) in the other three compounds locate in trigonal-bipyramidal environments.
Resumo:
A new fluorescent sensor for the sensitive and selective detection of cyanide (CN-) in aqueous media was developed herein. The sensing approach is based on CN--modulated quenching behavior of Cu2+ toward the photoluminescence (PL) of CdTe quantum dots (QDs). In the presence of CN-, the PL of QDs that have been quenched by Cu2+ was found to be efficiently recovered, which then allows the detection of CN- in a very simple approach. Experimental results showed that the pH of the buffer solution, concentration of copper ions, and size of CdTe QDs all influenced the response of the sensor to CN-. Under the optimal conditions, a good linear relationship between the PL intensity and the concentration of CN- can be obtained in the range of 3.0 x 10(-7) to 1.2 x 10(-5) M, with a detection limit as low as 1.5 x 10(-7) M. In addition, the present fluorescent sensor possesses remarkable selectivity for cyanide over other anions, and negligible influences were observed on the cyanide detection by the coexistence of other anions or biological species (such as albumin and typical blood constituents).
Resumo:
Pyrazoline derivatives have been used widely in dyeing industry as fluorescent whitening agents due to their excellent capability. According to Schellhammer theory of the relation between chemical structure and fluorescent quality, six new fluorescent compounds were designed and synthesized which contained the benzothiazole group in the I-pyrazoline, the indole group in the 3-pyrazoline and the derivatives of phenyl in the 5-pyrazoline. The structure of target compounds was confirmed by IR, H-1 NMR, MS and elementary analysis. The fluorescence spectra showed that these compounds had good fluorescence. They could absorb ultraviolet light at near 353 nm. The fluorescence maximum emission wavelengths were about 430-443 nm. It was a kind of promising fluorescence compounds. The largest fluorescence emission wavelength and the fluorescence intensity were related to the substituted group of the compounds. When the 6-Br group was introduced into benzothiazole, the fluorescence emission wavelength exhibited a blue shift, and the fluorescence intensity increased.
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.
Resumo:
Four diboron-contained ladder-type pi-conjugated compounds 1-4 were designed and synthesized. Their thermal, photophysical, electrochemical properties, as well as density functional theory calculations, were fully investigated. The single crystals of compounds 1 and 3 were grown, and their crystal structures were determined by X-ray diffraction analysis. Both compounds have a ladder-type g-conjugated framework. Compounds I and 2 possess high thermal stabilities, moderate solid-state fluorescence quantum yields, as well as stable redox properties, indicating that they are possible candidates for emitters and charge-transporting materials in electroluminescent (EL) devices. The double-layer device with the configuration of [ITO/NPB (40 nm)/1 or 2 (70 nm)/LiF (0.5 nm)/Al (200 nm)] exhibited good EL performance with the maximum brightness exceeding 8000 cd/m(2).
Resumo:
A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.
Resumo:
The solid solutions of CdYFeWO7, which are cubic pyrochlores of the type A(2)B(2)O(7), have been prepared and their structures were determined using Ab initio method. Rietveld refinement of the powder XRD data showed that CdYFeWO7 adopted cubic (Fd-3m) structure, while oxides crystallized in a defect-pyrochlore structure where both O (48f) and O'(8b) sites were partially occupied, and the frustrated cations sublattice precluded long range ordering of Fe/W in the pyrochlore structure. Charge distribution analysis also suggested incomplete occupation of different oxygen sites, thus the compound was non-stoichiometric, with the formula CdYFeW0.982O6.94, Magnetic measurements were carried out to find that Fe ions were in the high spin trivalent state. Curie Weiss paramagnetism down to similar to 5 K and the characteristic superposition between FC and ZFC suggested spin liquid rather than spin glass state.
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.
Resumo:
MgO supported copper salt of molybdovanadophosphoric acid H4PMo11VO40 catalysts were prepared in alcohol by impregnation and the carbon deposition over these catalysts during the n-hexanol oxidation reaction was studied. The coke predominantly deposited on the catalyst surface in the form of CH., and it was not found that it caused the deactivation of the catalyst. The XRD, IR, XPS characterizations reveal that the Keggin structure of the CPMV was unaffected by carbon deposition. Moreover, it was shown that the supported CPMVs over the MgO surface can be beneficial to eliminate the coke. The temperature programmed oxidation (TPO) study showed that coke was formed over the catalyst on two different sites: (1) deposited on the CPMVs which can be burn off at a low temperature; (2) deposited on the MgO which could only be removed at higher temperature. The coke content reached constant with the reaction time increasing.
Resumo:
The interfaces formed between copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were examined using photoemission and inverse photoemission spectroscopy. It is observed that in F16CuPc/BP2T the heterojunction is characterized by band bending in both materials, while in BP2T/F16CuPc the band bending is confined in BP2T only. The combination of the band bending and finite Debye lengths provides an explanation to the observed ambipolar behavior of the organic thin film transistors based on such heterojunctions.
Resumo:
The dielectric definition of average energy gap E-g of the chemical bond has been calculated quantitatively in Eu3+-doped 30 lanthanide compounds based on the dielectric theory of chemical bond for complex structure crystals. The relationship between the experimental charge transfer (CT) energy of Eu3+ and the corresponding average energy gap E-g has been studied. The results show that the CT energy increases linearly with increasing of the average energy gap E-g. The linear model is obtained. It allows us to predict the CT position of Eu3+-doped lanthanide compounds with knowledge of the crystal structure and index of refraction. Applied to the Ca4GdO(BO3)(3):Eu and Li2Lu5O4(BO3)(3):Eu crystals, the predicted results of CT energies are in good agreement with the experimental values, and it can be concluded that the lowest CT energy in Li2Lu5O4(BO3)(3):Eu originates from the site of Lu1.