964 resultados para Carbon labels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kraft pulp is currently bleached largely by the elemental chlorine free (ECF) technology with oxygen, chlorine dioxide, and hydrogen as active agents. This technology brought about significant environmental improvements in relation to standard processes based on chlorine gas and hypochlorite, but there is still need for further improvements. This study presents a novel environmentally friendly bleaching stage - the so-called `hydrogen peroxide in supercritical carbon dioxide`, P((SC-CO2)) - that can be adapted to current ECF bleaching processes, with preference in cases where hydrogen peroxide is already used. In this study, the P((SC-CO2)) stage was evaluated as a replacement to the last peroxide stage of the D(EP)DP bleaching sequence and to the first peroxide stage of the D(EP)DP sequence, for an oxygen delignified eucalypt kraft-O(2) pulp. The P((SC-CO2)) stage was run with 0.5% hydrogen peroxide, at 15% consistency, 70 degrees C, and 73 bar. The reaction time was 30 min. The performances of regular P stages and the new P((SC-CO2)) stage were compared. Promising results were observed with the DEP((SC-CO2))DP sequence; the P((SC-CO2)) decreased kappa number from 2.7 to 2.1, and the hexenuronic acid groups from 17.0 to 12.4 mmol kg(-1). The P((SC-CO2)) stage showed poor performance when applied in the D(EP)DP((SC-CO2)) sequence. It is concluded that the process presents potential but requires further optimization to improve selectivity and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine (CoPc), modified multi-walled carbon nanotube (MWCNT), and paraffin composite electrode for the quantitative determination of epinephrine (EP) in human urine samples. The electrochemical profile of the proposed composite electrode was analyzed by differential pulse voltammetry (DPV) that showed a shift of the oxidation peak potential of EP at 175 mV to less positive value, compared with a paraffin/graphite composite electrode without CoPc. DPV experiments in PBS at pH 6.0 were performed to determine EP without any previous step of extraction, clean-up, and derivatization, in the range from 1.33 to 5.50 mu mol L(-1), with a detection limit of 15.6 nmol L(-1) (2.86) of EP in electrolyte prepared with purified water. The lifetime of the proposed sensors was at least over 1000 determinations with 1.7 and 3.1 repeatability and reproducibility relative standard deviations, respectively. Human urine samples without any purification step were successfully analyzed under the standard addition method using paraffin/MWCNT/CoPc composite electrode. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported nickel catalysts of composition Ni/Y(2)O(3)-ZrO(2) were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y(2)O(3)-ZrO(2) in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO(2) conversion of 61% on the 5NiYZ catalyst at 800 degrees C, representing a better response than for the catalyst of the same composition prepared by wet impregnation. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of two different conductive carbon-black pigments, Vulcan XC-72 R and Printex L6, for the electrogeneration of hydrogen peroxide (H(2)O(2)) by reducing dissolved oxygen in an alkaline solution was performed. The materials were physically characterized by X-ray diffraction (XRD), Fourier transform infrared attenuated total reflection (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). XRD shows the presence of SO(2) and ATR-FTIR technique indicates a difference in NO and SO(2) functional groups between the two carbon pigments. XPS indicated presence of SO and NO and more oxygenated acid species on Printex L6. A rotating ring-disk electrode was used for electrochemical analysis of the oxygen reduction reaction (ORR). The results showed that the Printex L6 was better than Vulcan XC-72 R for H(2)O(2) production. Results also indicate that the number of electrons transferred in the ORR for Printex L6 and Vulcan XC-72 R were 2.2 and 2.9, respectively, while the percentages of H(2)O(2) formed were 88% and 51%. Scanning electrochemistry microscopy images confirmed the higher amount of H(2)O(2) formed in the Printex L6 pigment. Printex L6 was shown to be a more promising for H(2)O(2) production than Vulcan XC-72 R, while the latter was shown to have more potential for fuel cells. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helstångsborr och konstång kallas bergborrverktyg, som tillverkas av sexkantiga stänger med inre hål för ledning av spolvatten. Dessa spolhål är klädda med ferritiskt rostfritt stål. Innan valsning borras ett centrerat hål i stålämnet som ska valsas. I det borrade hålet appliceras ett rör av ferritiskt rostfritt stål och i det röret skjuts en manganstålskärna in. Efter valsning dras kärnan ut och ett spolhål med invändigt foder av rostfritt stål bildas. Under uppvärmningen och valsningen av stålämnet sker normalt en koldiffusion från manganstålskärnan till det rostfria fodret. Fodrets syfte är att skydda spolhålets yta mot erosion och korrosion.Syftet med arbetet var att hitta en metod som garanterar uppkolning av det invändiga fodret, samt att utreda vad uppkolningen betyder för den mekaniska hållfastheten i stängerna. Ett laboratorieförsök visade att det var bra, med avseende på uppkolning, att blanda stearat i kärnbestrykningsmedlet. Kärnbestrykningsmedlet penslas på manganstålskärnan innan den förs in i stålämnet som ska valsas, dess syfte är att minska friktionen vid kärnutdragningen efter valsning.Ett försök utfördes i valsverket med stearat i kärnbestrykningsmedlet. En grundlig undersökning utfördes på två hetor som valsats med stearat-bestrykningsmedel, samt på en traditionellt tillverkad heta för att ha som referens. Hetorna kapades till provstänger om 1,5 m, totalt undersöktes 55 st.Utvärderingen av verksförsöket visade att stängernas kvalitet blir tillräckligt bra om ingenting oförutsett händer i produktionen, oavsett om koltillskott är tillsatt i bestrykningsmedlet eller inte. Arbetet gav inte en garanterande metod, men visade att stängerna normalt håller hög kvalitet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly CO-emissions obtained from simulations with the yearly CO-emissions calculated based on the values that are obtained by the standard test methods. The results showed that the yearly CO-emissions obtained from the simulations are significant higher than the yearly CO-emissions calculated based on the standard test methods. It is also shown that for the studied systems the average emissions under these realistic annual conditions were greater than the limit values of two Eco-labels. Furthermore it could be seen that is possible to almost halve the CO-emission if the pellet heater is combined with a solar heating system.