972 resultados para COSMIC-RAYS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work proposes a transdisciplinary approach that integrates transpersonal psychology exercises with astronomy teaching, seeking to allow one to reintegrate the sky in his/her daily life, expand his/her environmental awareness and eventually experiment the unity between human and cosmos. This proposal intends to collaborate with the supplying of education, which lacks initiatives of this kind, with the promotion of an integration of the scientific knowledge with the human experience that transcends the materialistic and fragmentary objectives of the current educational system. As a result of that lack, the teachers formation is also poor as for an integral and transdisciplinary approach. Besides, we also approached in this research the necessity to propose alternatives so that the educators may work in a more assertive way with the environmental and anthropological crisis in which we are living. Our working hypothesis is that the contents of astronomy, when they are dealt in a holisticanthropological focus and are related with transpersonal psychology practices, can come to be an efficient cultural-academic vehicle, capable of propitiating an expansion of consciousness and changes in the way one conceives the world. Such changes are necessary so that a more solidary, fair and ecologically balanced life may come to exist and prevail in the planet. Part of the collection of data was done through the ethnographic method, once an anthropological interpretation is inextricably associated with this kind of educational intervention, which will naturally include ethno-visions of the universe as well as specific cultural elements. In the beginning the scope of this research was a group of students attending the Astronomy assignment in an undergraduate Geography course (UFRN), in which we accomplished participant observation, half-open interviews and the first experimental practices mentioned. After the evaluation of the first data collected from that initial group, we elaborated an academic extension course, Laboratory in Cosmoeducation, and we offered it to teachers of the 1st and 2nd cycles of the fundamental level of the Alceu Amoroso Lima State School, located in the North Zone of Natal. We prized self-experimentation in that course, so that the teachers could enrich their repertoire of personal experiences, stimulating meditative reflections and eventual changes in the ways of conceiving the world and in their pedagogical practice. The transdisciplinary attitude permeated all our educational action, because this approach transcends the boundaries of disciplines, seeking essentially the integral development of the human being. The process has made us realize that the practice of looking at the sky , as a way of reintegrating it into daily life, provokes a process of expansion of the consciousness and of reintegration of the self in a wider level of environmental interrelation. According to the results, the occurrence of conceptual and existential changes of the world vision of the participant teachers was evident, reassuring ourselves of the idea that the interface between astronomy teaching and the practices of transpersonal psychology can contribute to the recovery of a holistic relationship between the human being and the cosmos and to inspire the arising of a more wide-ranging ethics, based on universal, impartial and sustainable values
Resumo:
Background: In this case report we presented the stand-alone posterior approach for hemivertebra resection with unilateral laminar hooks.Case report: The patient was male and five years old. The coronal and sagital X-Rays images showed a failure of vertebral formation, segmented hemivertebra of third lumbar vertebra. The segmented hemivertebra caused a thoracolumbar scoliosis from T12 to L4 (rightside convexity), of 30 degrees (Cobb angle). The patient was submitted to a hemivertebra resection from posterior approach with two unilateral laminars hooks stabilization (superior lamina in L2 and inferior lamina of L4) in association to a compression system and autologus bone graft. The coronal X-Ray image after surgery showed a partial improvement to 25 degrees (Cobb angle) between L2 and L4. After three years of follow up it was not observed system failure (hook pull-out), maintance of curve (25 degrees of Cobb angle) and correction of trunk inbalance.Conclusion: The hemivertebra resection with posterior approach is safe, with satisfactory correction of scoliosis curve, which means is a good choice for congenital scoliosis surgical treatment.
Resumo:
Thermoelectric Refrigerators (TEC Thermoelectric Cooling) are solid-state heat pumps used in applications where stabilization of temperature cycles or cooling below the room temperature are required. TEC are based on thermoelectric devices, and these in turn, are based on the Peltier effect, which is the production of a difference in temperature when an electric current is applied to a junction formed by two non-similar materials. This is one of the three thermoelectric effects and is a typical semiconductor junction phenomenon. The thermoelectric efficiency, known as Z thermoelectric or merit figure is a parameter that measures the quality of a thermoelectric device. It depends directly on electrical conductivity and inversely on the thermal conductivity. Therefore, good thermoelectric devices have typically high values of electrical conductivity and low values of thermal conductivity. One of the most common materials in the composition of thermoelectric devices is the semiconductor bismuth telluride (Bi2Te3) and its alloys. Peltier plates made up by crystals of semiconductor P-type and N-type are commercially available for various applications in thermoelectric systems. In this work, we characterize the electrical properties of bismuth telluride through conductivity/resistivity of the material, and X-rays power diffraction and magnetoresistance measurements. The results were compared with values taken from specific literature. Moreover, two techniques of material preparation, and applications in refrigerators, are discussed
Resumo:
In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the effect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin
Resumo:
Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established
Resumo:
In this work we deposit via non-reactive magnetron sputtering of radio-frequency nanofilmes of nitreto of aluminum(AlN). The nanofilms aluminum nitride are semiconductors materials with high thermal conductivity, high melting point, piezoelectricity and wide band gap (6, 2 eV) with hexagonal wurtzite crystal structure, belonging to the group of new materials called III-V nitrides in which together with the gallium nitride and indium nitride have attracted much interest because they have physical and chemical properties relevant to new technological applications, mainly in microelectronic and optoelectronic devices. Three groups were deposited with thicknesses nanofilms time dependent on two substrates (glass and silicon) at a temperature of 25 ° C. The nanofilms AlN were characterized using three techniques, X-ray diffraction, Raman spectroscopy and atomic force microscopy (AFM), examined the morphology of these. Through the analysis of X-rays get the thickness of each sample with its corresponding deposition rate. The analysis of X-rays also revealed that nanofilms are not crystalline, showing the amorphous character of the samples. The results obtained by the technique, atomic force microscopy (AFM) agree with those obtained using the technique of X-rays. Characterization by Raman spectroscopy revealed the existence of active modes characteristic of AlN in the samples
Resumo:
In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term
Resumo:
Significant observational effort has been directed to unveiling the nature of the so-called dark energy. However, given the large number of theoretical possibilities, it is possible that this a task cannot be based only on observational data. In this thesis we investigate the dark energy via a thermodynamics approach, i.e., we discuss some thermodynamic properties of this energy component assuming a general time-dependent equation-of-state (EoS) parameter w(a) = w0 + waf(a), where w0 and wa are constants and f(a) may assume different forms. We show that very restrictive bounds can be placed on the w0 - wa space when current observational data are combined with the thermodynamic constraints derived. Moreover, we include a non-zero chemical potential μ and a varying EoS parameter of the type ω(a) = ω0 + F(a), therefore more general, in this thermodynamical description. We derive generalized expressions for the entropy density and chemical potential, noting that the dark energy temperature T and μ evolve in the same way in the course of the cosmic expansion. The positiveness of entropy S is used to impose thermodynamic bounds on the EoS parameter ω(a). In particular, we find that a phantom-like behavior ω(a) < −1 is allowed only when the chemical potential is a negative quantity (μ < 0). Thermodynamically speaking, a complete treatment has been proposed, when we address the interaction between matter and energy dark
Resumo:
The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP
Resumo:
Many astronomical observations in the last few years are strongly suggesting that the current Universe is spatially flat and dominated by an exotic form of energy. This unknown energy density accelerates the universe expansion and corresponds to around 70% of its total density being usually called Dark Energy or Quintessence. One of the candidates to dark energy is the so-called cosmological constant (Λ) which is usually interpreted as the vacuum energy density. However, in order to remove the discrepancy between the expected and observed values for the vacuum energy density some current models assume that the vacuum energy is continuously decaying due to its possible coupling with the others matter fields existing in the Cosmos. In this dissertation, starting from concepts and basis of General Relativity Theory, we study the Cosmic Microwave Background Radiation with emphasis on the anisotropies or temperature fluctuations which are one of the oldest relic of the observed Universe. The anisotropies are deduced by integrating the Boltzmann equation in order to explain qualitatively the generation and c1assification of the fluctuations. In the following we construct explicitly the angular power spectrum of anisotropies for cosmologies with cosmological constant (ΛCDM) and a decaying vacuum energy density (Λ(t)CDM). Finally, with basis on the quadrupole moment measured by the WMAP experiment, we estimate the decaying rates of the vacuum energy density in matter and in radiation for a smoothly and non-smoothly decaying vacuum
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The dental documentation or handbook is a collection of documents produced by the professional with diagnostic and therapeutical purpose where the inherent information to the buccal and general health of patients are registered. The register and proper filling of these documents, taking care of the ethical and legal requirements, provide to the dentist the possibility to contribute with justice in cases of human identification and makes of these documents an essential element of evidence in the ethical processes, administrative, civil and criminal against the dentists. Ahead of this fact, understanding such requirements and the importance of the dentist to register himself adequately, this research verified the knowledge of Natal (RN) City s dentists with relation to the elaboration of the dental handbook, investigating the concepts and the importance attributed to the handbook, identifying the documents more used and filed by these professionals, besides inquiring the legal value of filed documents and the filling time of these ones. The sample was constituted by 124 dentists, who had answered a questionnaire, after having been randomly selected ITom a list of professionals subscribed in the Dentistry Local Council/RN Section. The analysis of the results showed that majority of the participant citÍzens (52,3%) confers to the dental documentation the clinical importance, followed by the legal and forensic-dentistry importance; 59,3% of the searched professionals do not distinguish satisfactorily or they do not observe differences between the dental handbook and the clinical filing card, the X-rays, the dental certificates, the prescriptions, the directions and the receipts; between the documents of common use to clínical and specialist ones, the contract of rendering of services and term of ITee and cleared up consent are the documents less used by the professionals. It was still verified, that only 13,1% of the sample register the signature of the patients in the clinical filing card, making it more credibility to be presented in judgement. In the same way, copies of dental certificates and prescriptions evaluated and signed by the patients are filed respectively by only 13,5% and 9,4% ofthe searched professionals and 50% ofthe sample, keep these documents filed for an indeterminate period of time, that is, these professionals have the guard of the handbook and they do not intend to disdain it, although 85,5% of the sample does not recognize the real proprietor of the handbook. It is concluded that a great part of the dentists is unaware about the importance of the dental documentation, and neglect its elaboration, leaving themselves exposed to several kinds of penalties foreseen in the legislation
Resumo:
Goat breeding in the state of Rio Grande do Norte, Brazil has promising economic possibilities, with the proper handling of the natural resources. The introduction of specialized animals has been one of the ways used to improve herd genetics and increase productivity. However, climate has been one of the regional factors that most interferes with the adaptation of the new genetic prevalence resulting from the introduction of exotic breeds, because in their country of origin, the air temperature during most of the year is lower than the animals body temperature. With this in mind, the aim of this study was to characterize behavioral, physiological and morphological profiles and milk production of female Saanen goats belonging to different genetic groups raised in the semi-arid region of Rio Grande do Norte in Northeast Brazil. The study was conducted in the city of Lages (5° 42 00 S and 36° 14 41 W). We used 25 lactating female Saanen goats, distributed into 3 genetic groups: 5 purebred animals, 11 three-quarter bred and 9 half-bred. Behavioral observations were made over three consecutive days in the months of August and September, between 09:00 and 11:30h, when the animals were grazing. Physiological and meteorological data were recorded in the last three days of June, July, August and September at 05:00h and at 16:00h. In the semi-intensive breeding system, the animals from different genetic groups were similar in both field behavior and physiological response patterns. Although the purebred goats had longer hair, they did not show symptoms of thermal discomfort. Their white hair helped to reflect the short wavelength rays and thus eliminate those at the longer wave lengths. We concluded that the animals raised in the semi-intensive milk production system in this study seem to have adapted to the climatic conditions of the semi-arid region of Rio Grande do Norte, Brazil