986 resultados para COMPUTATION METHODS
Resumo:
Outlier detection in high dimensional categorical data has been a problem of much interest due to the extensive use of qualitative features for describing the data across various application areas. Though there exist various established methods for dealing with the dimensionality aspect through feature selection on numerical data, the categorical domain is actively being explored. As outlier detection is generally considered as an unsupervised learning problem due to lack of knowledge about the nature of various types of outliers, the related feature selection task also needs to be handled in a similar manner. This motivates the need to develop an unsupervised feature selection algorithm for efficient detection of outliers in categorical data. Addressing this aspect, we propose a novel feature selection algorithm based on the mutual information measure and the entropy computation. The redundancy among the features is characterized using the mutual information measure for identifying a suitable feature subset with less redundancy. The performance of the proposed algorithm in comparison with the information gain based feature selection shows its effectiveness for outlier detection. The efficacy of the proposed algorithm is demonstrated on various high-dimensional benchmark data sets employing two existing outlier detection methods.
Resumo:
GPUs have been used for parallel execution of DOALL loops. However, loops with indirect array references can potentially cause cross iteration dependences which are hard to detect using existing compilation techniques. Applications with such loops cannot easily use the GPU and hence do not benefit from the tremendous compute capabilities of GPUs. In this paper, we present an algorithm to compute at runtime the cross iteration dependences in such loops. The algorithm uses both the CPU and the GPU to compute the dependences. Specifically, it effectively uses the compute capabilities of the GPU to quickly collect the memory accesses performed by the iterations by executing the slice functions generated for the indirect array accesses. Using the dependence information, the loop iterations are levelized such that each level contains independent iterations which can be executed in parallel. Another interesting aspect of the proposed solution is that it pipelines the dependence computation of the future level with the actual computation of the current level to effectively utilize the resources available in the GPU. We use NVIDIA Tesla C2070 to evaluate our implementation using benchmarks from Polybench suite and some synthetic benchmarks. Our experiments show that the proposed technique can achieve an average speedup of 6.4x on loops with a reasonable number of cross iteration dependences.
Resumo:
The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
Fastest curve-fitting procedures are proposed for vertical and radial consolidations for rapid loading methods. In vertical consolidation, the next load increment can be applied at 50-60% consolidation (or even earlier if the compression index is known). In radial consolidation, the next load increment can be applied at just 10-15% consolidation. The effects of secondary consolidation on the coefficient of consolidation and ultimate settlement are minimized in both cases. A quick procedure is proposed in vertical consolidation that determines how far is calculated from the true , where is coefficient of consolidation. In radial consolidation no such procedure is required because at 10-15% the consolidation effects of secondary consolidation are already less in most inorganic soils. The proposed rapid loading methods can be used when the settlement or time of load increment is not known. The characteristic features of vertical, radial, three-dimensional, and secondary consolidations are given in terms of the rate of settlement. A relationship is proposed between the coefficient of the vertical consolidation, load increment ratio, and compression index. (C) 2013 American Society of Civil Engineers.
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.
Resumo:
A review of high operating temperature (HOT) infrared (IR) photon detector technology vis-a-vis material requirements, device design and state of the art achieved is presented in this article. The HOT photon detector concept offers the promise of operation at temperatures above 120 K to near room temperature. Advantages are reduction in system size, weight, cost and increase in system reliability. A theoretical study of the thermal generation-recombination (g-r) processes such as Auger and defect related Shockley Read Hall (SRH) recombination responsible for increasing dark current in HgCdTe detectors is presented. Results of theoretical analysis are used to evaluate performance of long wavelength (LW) and mid wavelength (MW) IR detectors at high operating temperatures. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Structural dynamics of dendritic spines is one of the key correlative measures of synaptic plasticity for encoding short-term and long-term memory. Optical studies of structural changes in brain tissue using confocal microscopy face difficulties of scattering. This results in low signal-to-noise ratio and thus limiting the imaging depth to few tens of microns. Multiphoton microscopy (MpM) overcomes this limitation by using low-energy photons to cause localized excitation and achieve high resolution in all three dimensions. Multiple low-energy photons with longer wavelengths minimize scattering and allow access to deeper brain regions at several hundred microns. In this article, we provide a basic understanding of the physical phenomena that give MpM an edge over conventional microscopy. Further, we highlight a few of the key studies in the field of learning and memory which would not have been possible without the advent of MpM.
Resumo:
The sparse recovery methods utilize the l(p)-normbased regularization in the estimation problem with 0 <= p <= 1. These methods have a better utility when the number of independent measurements are limited in nature, which is a typical case for diffuse optical tomographic image reconstruction problem. These sparse recovery methods, along with an approximation to utilize the l(0)-norm, have been deployed for the reconstruction of diffuse optical images. Their performancewas compared systematically using both numerical and gelatin phantom cases to show that these methods hold promise in improving the reconstructed image quality.
Resumo:
Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.
Resumo:
The electronic structure of Nd1-xYxMnO3 (x-0-0.5) is studied using x-ray absorption near-edge structure (XANES) spectroscopy at the Mn K-edge along with the DFT-based LSDA+U and real space cluster calculations. The main edge of the spectra does not show any variation with doping. The pre-edge shows two distinct features which appear well-separated with doping. The intensity of the pre-edge decreases with doping. The theoretical XANES were calculated using real space multiple scattering methods which reproduces the entire experimental spectra at the main edge as well as the pre-edge. Density functional theory calculations are used to obtain the Mn 4p, Mn 3d and O 2p density of states. For x=0, the site-projected density of states at 1.7 eV above Fermi energy shows a singular peak of unoccupied e(g) (spin-up) states which is hybridized Mn 4p and O 2p states. For x=0.5, this feature develops at a higher energy and is highly delocalized and overlaps with the 3d spin-down states which changes the pre-edge intensity. The Mn 4p DOS for both compositions, show considerable difference between the individual p(x), p(y) and p(z)), states. For x=0.5, there is a considerable change in the 4p orbital polarization suggesting changes in the Jahn-Teller effect with doping. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.
Resumo:
Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods. This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated methods of song analysis, corresponding cross-validation by humans remains essential.